We describe a protocol allowing the purification of the mouse brain’s vascular compartment. Isolated brain vessels include endothelial cells linked by tight junctions and surrounded by a continuous basal lamina, pericytes, vascular smooth muscle cells, as well as perivascular astroglial membranes.
En el cerebro, la mayor parte del sistema vascular consiste en una barrera selectiva, la barrera hematoencefálica (BBB) que regula el intercambio de moléculas y células inmunes entre el cerebro y la sangre. Por otra parte, la enorme demanda metabólica neuronal requiere una regulación de momento a momento del flujo sanguíneo. Cabe destacar que las anomalías de estas regulaciones son características etiológicas de la mayoría de las patologías cerebrales; incluyendo glioblastoma, accidente cerebrovascular, edema, epilepsia, enfermedades degenerativas (por ejemplo: enfermedad de Parkinson, la enfermedad de Alzheimer), tumores cerebrales, así como las condiciones inflamatorias tales como esclerosis múltiple, meningitis y disfunciones cerebrales sepsis inducida. Por lo tanto, la comprensión de los eventos de señalización que modulan la fisiología vascular cerebral es un gran desafío. Mucho penetración en las propiedades celulares y moleculares de los diversos tipos de células que componen el sistema cerebrovascular se puede obtener de cultivo primario o clasificación de células a partir de tejido cerebral recién disociada. Sin embargo,propiedades tales como la polaridad celular, la morfología y relaciones intercelulares no se mantienen en tales preparaciones. El protocolo que se describe aquí está diseñado para purificar fragmentos de vasos del cerebro, mientras que el mantenimiento de la integridad estructural. Se demuestra que los vasos aislados consisten en células endoteliales sellados por uniones estrechas que están rodeados por una lámina basal continua. Los pericitos, células de músculo liso, así como las membranas de astrocitos perivasculares endfeet permanecen unidos a la capa endotelial. Por último, se describe cómo llevar a cabo experimentos de inmunotinción en vasos cerebrales purificados.
El funcionamiento adecuado del sistema nervioso central (SNC) requiere un entorno extracelular altamente regulado, y sus demandas metabólicas son enormes en comparación con otros órganos 1. El SNC es también extremadamente sensibles a una amplia gama de productos químicos, generalmente inofensivo para los órganos periféricos, pero a la misma, neurotóxico. Para garantizar el correcto funcionamiento, la mayor parte del 'vasculatura SNC forma una barrera endotelial; la barrera hematoencefálica (BBB), que controla el flujo de moléculas e iones, así como el paso de las células inmunes entre la sangre y el cerebro, lo que se mantiene la homeostasis adecuada 2, sino también limitar la entrada de drogas terapéuticas, los tratamientos que impiden por lo tanto de trastornos neurológicos 3. A nivel celular, la BBB se sostiene principalmente por extensas uniones estrechas entre las células endoteliales, la expresión de los transportadores de eflujo polarizado y una tasa muy baja transcitosis 4. Propiedades y funciones de la BBB se inducen principalmente por necélulas ighboring 4. En particular, los pericitos juegan un papel importante en la inducción y mantenimiento de la BBB 5,6. Siendo células contráctiles, pericitos también regulan el flujo sanguíneo 7 al igual que las células del músculo liso que rodean los grandes vasos. Por último, los astrocitos, las principales células gliales del cerebro, enviar grandes procesos denominados endfeet alrededor de la mayor parte de la vasculatura del cerebro 8 y modular la acreditación integridad y la quiescencia inmune 9, la transferencia de metabolitos a las neuronas 10, e inducir el estrecho acoplamiento entre la actividad neuronal y el flujo de sangre 11,12.
La capacidad para estudiar las propiedades moleculares y celulares del sistema cerebrovascular es crucial para caracterizar mejor su contribución a la fisiología del cerebro y la fisiopatología. Para abordar esta cuestión, las estrategias para aislar el sistema vascular cerebral del cerebro se han desarrollado, que permite la preparación de fragmentos de vasos cerebrales intactas. Cerebral buque purification fue descrito inicialmente utilizando cerebros bovinos 13 y mejorado y adaptado a otras especies, en particular los roedores 14. En este último estudio, se introdujo el uso de filtros de diferentes tamaños para separar los vasos cerebrales en al fracciones enriquecidas en los vasos de diferentes diámetros. Curiosamente, en estas preparaciones, las células endoteliales mantienen sus propiedades metabólicas 15, funcionalidad transportador 16 y 17 de polarización. A continuación, describimos en detalle este protocolo y demostrar, además, que los vasos aislados conservan la mayor parte de sus estructuras en situ. Las células endoteliales se mantienen unidos por uniones estrechas y rodeado por una lámina basal continua. Pericitos y células musculares lisas de permanecer unidos a la capa endotelial, así como de astrocitos perivasculares membranas. Sin embargo, se eliminan astrocitos, células microgliales, neuronas y oligodendrocitos. Por último, se describe un procedimiento para llevar a cabo la inmunotinción en vasos cerebrales aisladas. </p>
Hasta ahora la mayoría de los estudios moleculares y celulares en relación con el sistema cerebrovascular se han realizado en células de los vasos cerebrales purificados disociados por la célula de clasificación utilizando cepas reportero ratón específicos de células o procedimientos basados en inmunotinción 18,19. Aunque estas técnicas permite el aislamiento de las poblaciones de células cerebrovasculares casi puros, células aisladas pierden por completo su in situ morfología y las interacciones, que a su vez, afecta en gran medida sus propiedades moleculares y celulares. El protocolo descrito aquí, lo que permite el aislamiento de fragmentos cerebrovasculares enteros sin necesidad de anticuerpos específicos o manchas de ratones transgénicos, ofrece una buena alternativa como la estructura general de los vasos cerebrales aisladas se conserva, por lo tanto, disminuyendo repercusiones sobre sus propiedades moleculares. Vasos aislados podrían entonces ser utilizados para el estudio de la actividad genética, la síntesis de proteínas y la regulación de la acreditación como se ha descrito recientemente 20,21 </sup>. Por último, en comparación con láser captura microdissection 22,23 del presente protocolo es barato, fácil de realizar y rápidamente adaptables a cualquier laboratorio.
La barrera sangre-cerebro regula el paso de sustancias fisiológicas dentro y fuera del SNC y lo protege contra sustancias potencialmente nocivas presentes en la sangre. Está implicado en varias patologías del sistema nervioso central, incluyendo enfermedades neurodegenerativas 2 y 28 tumores cerebrales. La muy baja permeabilidad de la BHE también dificulta el paso de agentes terapéuticos dirigidos células neuronales y el desarrollo de métodos que tengan la intención de abrir de forma reversible la BHE…
The authors have nothing to disclose.
Este trabajo fue apoyado por el Labex MemoLife y por el ARSEP (Fondation pour l'aide à la recherche sur la sclérose en plaques)
Tissue Grinder Size C | Thomas scientific | 3431E25 | |
centrifuge 5415 R | Eppendorf | ||
centrifuge 5810 R | Eppendorf | 5811000320 | |
High-performance, Modular Stereomicroscope | Leica | MZ6 | |
Compact System Provides High Quality Leica LED1000 | Leica | LED1000 | |
low binding tips (P1000) | Sorenson BioScience | 14200T | |
Swinnex 47mm filter holder PP 8/Pk | Millipore | SX0004700 | |
Nylon net filter disc Hydrophilic 20µm 47mm 100/Pk | Millipore | NY2004700 | |
Nylon net filter disc Hydrophilic 100µm 47mm 100/Pk | Millipore | NY1H04700 | |
Standard Wall Borosilicate Tubing | Sutter Instrument | B150-86-7.5 | |
Microscope Slides | Thermo Scientific | 1014356290F | |
Cover Slips, Thickness 1 | Thermo Scientific | P10143263NR1 | |
0,2 ml Thin-walled tubes and domed cap | Thermo Scientific | AB-0266 | |
PARAFILM® M (roll size 4 in. × 125 ft) | Sigma | P7793-1EA | |
HBSS, no calcium, no magnesium, no phenol red | Life technology | 14175-129 | |
HEPES (1M) | Life technology | 15630056 | |
Dextran from Leuconostoc spp. Mr ~70,000 | Sigma | 31390 | |
Bovine serum albumin | Sigma | A2153 | |
PBS 10X | Euromedex | ET330 | |
16% Formaldehyde (w/v), Methanol-free | Thermo Scientific | 28908 | |
Triton™ X-100 | Sigma | X100 | |
bisBenzimide H 33342 trihydrochloride (Hoechst) | Sigma | 14533 | |
Mounting medium Fluoromount-G | Southern Biotech | 0100-01 | |
Isolectin GS-IB4 From Griffonia simplicifolia, Alexa Fluor® 488 Conjugate; Dilution 1/100 | Life technology | I21411 | |
Agrin (rabbit) ; dilution 1/400 | kindly provided by Dr Markus A Ruegg | ||
Anti ZO-1 (mouse, clone 1A12) | Life technology | 33-9100 | dilution 1:500 |
Anti Smooth Muscle Actin (mouse, clone 1A4) | Sigma | A2547 | dilution 1:500 |
Anti GFAP (mouse, clone GA5) | Sigma | G3893 | dilution 1:500 |
Anti AQP4 (rabbit) | Sigma | A5971 | dilution 1:500 |
Anti Cx43 (mouse, Clone 2) | BD Biosciences | 610061 | dilution 1:500 |
Anti Olig2 (rabbit) | Millipore | AB9610 | dilution 1:200 |
Anti NF-M (mouse) | provided by Dr Beat M. Riederer, University of Lausanne, Switzerland. | dilution 1:10 | |
Anti Iba1 (rabbit) | Wako | 019-19741 | dilution 1:400 |
Alexa Fluor® 488 Goat Anti-Mouse IgG (H+L) Antibody | Life technology | A11029 | dilution 1:2000 |
Goat anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor® 488 conjugate | Life technology | A11034 | dilution 1:2000 |
Alexa Fluor® 555 Goat Anti-Mouse IgG (H+L) Antibody | Life technology | A21424 | dilution 1:2000 |
Goat anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor® 555 conjugate | Life technology | A21429 | dilution 1:2000 |