Summary

忽略并出席在注意控制过程的神经生理信号的测量

Published: July 05, 2015
doi:

Summary

Attention control comprises enhancement of target signals and attenuation of distractor signals. We describe an approach to measure separately but concurrently, the neurophysiology of attending and ignoring in sustained intermodal attention, utilizing a passive control condition during which neither process is continuously engaged.

Abstract

Attention control is the ability to selectively attend to some sensory signals while ignoring others. This ability is thought to involve two processes: enhancement of sensory signals that are to be attended and the attenuation of sensory signals that are to be ignored. The overall strength of attentional modulation is often measured by comparing the amplitude of a sensory neural response to an external input when attended versus when ignored. This method is robust for detecting attentional modulation, but precludes the ability to assess the separate dynamics of attending and ignoring processes. Here, we describe methodology to measure independently the neurophysiological signals of attending and ignoring using the intermodal attention task (IMAT). This task, when combined with electroencephalography, isolates neurophysiological sensory responses in auditory and visual modalities, when either attending or ignoring, with respect to a passive control. As a result, independent dynamics of attending and of a ignoring can be assessed in either modality. Our results using this task indicate that the timing and cortical sources of attending and ignoring effects differ, as do their contributions to the attention modulation effect, pointing to unique neural trajectories and demonstrating sample utility of measuring them separately.

Introduction

注意控制导行为通过引导我们的神经和认知资源朝向选择输入信号,同时限制进入其他信号,基于给定的行为目标1。例如,阅读一本书时,对应于书中的视觉信号是目标信号被增强,而其它感觉信号 – 例如电视在隔壁房间 – 是牵引器信号被衰减。在人类和非人类的灵长类动物1-4录音,表明在感觉皮层神经反应被增强相对于期间选择性注意忽略干扰项出席目标,表明感觉输入在大脑中的强度进行调制,作为是否一个功能它们被归类为目标或干扰项5-7。我们参加和忽略的注意调制效应是指当这种差异在信号强度。

越来越多的兴趣是从参加忽略的神经过程有助于注意力的控制及其障碍,另行是否以及如何神经过程的问题​​。这是越来越明显,忽略干扰的能力,可以独立于我们参加目标的能力被削弱。例如,撑开抑制可以增加任务负载8,认知老化9和睡眠剥夺10被削弱,在没有目标增强递减。目前还不知道,如果在目标增强递减也可以在不抑制分心的赤字存在。也许更重要的是,它没有解决或者是否参加或忽略,但不能同时,可以阐明其中注意控制受损神经精神条件的赤字。因此,它是有价值的,以便更好地理解是否出席并忽略源自可分离皮层通路,如果以及它们如何在神经动力学不同。通过测量和出席分别忽略过程,这样的问题可以得到解决。

在这里,我们描述的方法来衡量和参加另行忽略的神经生理信号,但同时,在持续关注。这种方法建立在注意力调制效果:在当个人在参加和忽略在感官流刺激神经感官反应幅度的差异。注意调制效应是一种强大的工具,用于检测注意调制过的感官信号,但它排除来评估主治和忽略过程的分离动力学的能力。即,主治和忽略可能出现,因为人们关注的过程增强了感官目标信号时在神经感觉反应的差异,或由于忽略衰减感官牵引信号,或二者。这些替代品之间测试,使用一个附加的控制条件是必需的,其中一个量化strengtħ的感觉输入在其天然基线,当它们既不出席也不忽略。这类似于走在繁忙的街道,满车,但也积极看( 出租车),也不主动忽略( 例如 ,非出租车小汽车和公共汽车)的过路车。通过评估所参加或忽略感觉信号,相对于一个参比条件主治和忽略过程中,幅度和定时可以单独进行量化。

这种被动控制测量出席,而忽略过程进行有效地用途已在预期11-13注意力和记忆力,注意力相互作用9,10,14-17研究报道。在这里,我们描述了使用中的持续关注的上下文这种方法的,在一个非线索,连续,联运( ,听觉视觉)注意力任务(IMAT)18。换句话说,这种方法适合于正在进行叻的研究呃比预备控制流程,允许跨时间这些过程的跟踪。此方法还量化调节在不同的感官方式( 听觉与视觉)感觉反应控制流程,从而专注于那些没有专门为特定的感官或内容领域中的进程。不同于以往的功能性磁共振成像研究15,19,20,这种方法的轨道出席,而忽略使用时间分辨神经生理信号(脑电图,脑电图),从而提供在出席而忽略过程的时间分布是毫秒级的进程。我们的代表结果表明在确定的直接证据可分离皮质来源和出席并忽略的神经过程的时间动态,并注意调节效果的独特贡献使用该技术。

Protocol

注:本研究方案是根据批准的研究审查委员会在加州洛杉矶大学的道德准则制定。 1.准备听觉和视觉刺激使用其中能够产生视觉图像的软件,在任何频率(视觉角度的例如 1.36周/度)的直径,并创建两个灰度正弦光栅,约为5.7英寸。图像将具有100毫秒的屏幕上的持续时间。 倾斜约10视觉度到断开正中右光栅之一,并倾斜其它光栅相同的量向光栅的左边。 <…

Representative Results

该协议IMAT先前已用于确定出席,并在持续关注18无视流程的响应速度的独特贡献。在这项研究中,我们测试了35例健康右利手人(22女,年龄:X = 21.0,σ= 5.4),通过在加州大学洛杉矶分校心理学系主题池招募。所有的参与者提供书面参与研究之前知情同意书。代表性的结果突出测量出席的值,并独立地忽略流程。在这些结果中,该IMAT揭露出席的独特时间和空间轮廓,并忽略过程相对于该…

Discussion

有关出席并无视注意控制过程可能涉及不同的神经通路和时间的课程。因此,它是值分别测量这些进程。该IMAT是一个工具,通过它人们可以捕捉出席并分别忽略的神经电生理信号,但同时,在持续关注。关键的步骤包括感官神经生理反应的测量时,参与者在参加,忽视或被动地感知在一个给定的方式呈现刺激 – 无论是听觉还是视觉。最重要的是,使用其中没有模态参加,并且其中不响应由一个基…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

We would like to thank Jyoti Mishra for useful discussions regarding the paradigm. This research was supported by NIH grants R33DA026109 and R21MH096329 to MSC.

Materials

NetStation Software Electrical Geodesic, Inc. version 4.5.1 Alternate recording software may be used.
Matlab Software The MathWorks, Inc. 7.10.0 (R2010a) Alternate analysis and presentation software may be used.
PsychToolbox Software http://psychtoolbox.org/ v3.0.8 (2010-03-06) Open-source software. Alternate stimulus presentation software may be used.
Netstation Amplifier Electrical Geodesic, Inc. 300 Alternate amplifier may be used.
EEG Net Electrical Geodesic, Inc. HCGSN130 Alternate EEG cap may be used.
Saline-Based Electrolyte (Potassium Chloride) Electrical Geodesic, Inc. n/a Electrolyte used in soaking of net for this high-impedance EEG system. Alternate electrolyte mediate can be used.

Referenzen

  1. Desimone, R., Duncan, J. Neural Mechanisms of Selective Visual-Attention. Annu. Rev. Neurosci. 18, 193-222 (1995).
  2. Hillyard, S. A. Electrophysiology of Human Selective Attention. Trends Neurosci. 8, 400-405 (1985).
  3. Kastner, S., Ungerleider, L. G. The neural basis of biased competition in human visual cortex. Neuropsychologia. 39, 1263-1276 (2001).
  4. Mangun, G. R. Neural Mechanisms of Visual Selective Attention. Psychophysiology. 32, 4-18 (1995).
  5. Chadick, J. Z., Gazzaley, A. Differential coupling of visual cortex with default or frontal-parietal network based on goals. Nat Neurosci. 14, 830-832 (2011).
  6. Ruff, C. C., Driver, J. Attentional preparation for a lateralized visual distractor: behavioral and fMRI evidence. J Cogn Neurosci. 18, 522-538 (2006).
  7. Serences, J. T., Yantis, S., Culberson, A., Awh, E. Preparatory activity in visual cortex indexes distractor suppression during covert spatial orienting. J Neurophysiol. 92, 3538-3545 (2004).
  8. Rissman, J., Gazzaley, A., D’Esposito, M. The effect of non-visual working memory load on top-down modulation of visual processing. Neuropsychologia. 47, 1637-1646 (2009).
  9. Gazzaley, A., Cooney, J. W., Rissman, J., D’Esposito, M. Top-down suppression deficit underlies working memory impairment in normal aging. Nat Neurosci. 8, 1298-1300 (2005).
  10. Kong, D. Y., Soon, C. S., Chee, M. W. L. Functional imaging correlates of impaired distractor suppression following sleep deprivation. NeuroImage. 61, 50-55 (2012).
  11. Luck, S. J., et al. Effects of Spatial Cueing on Luminance Detectability – Psychophysical and Electrophysiological Evidence for Early Selection. J Exp Psychol Human. 20, 887-904 (1994).
  12. Posner, M. I. Orienting of Attention. QJ Exp Psychol. 32, 3-25 (1980).
  13. Posner, M. I., Nissen, M. K., Ogden, W. C., Pick, H., Saltzmann, E. . Modes of Perceiving and Processing Information. , 137-157 (1978).
  14. Gazzaley, A. Influence of early attentional modulation on working memory. Neuropsychologia. 49, 1410-1424 (2011).
  15. Johnson, J. A., Zatorre, R. J. Attention to simultaneous unrelated auditory and visual events: Behavioral and neural correlates. Cereb Cortex. 15, 1609-1620 (2005).
  16. Johnson, J. A., Zatorre, R. J. Neural substrates for dividing and focusing attention between simultaneous auditory and visual events. NeuroImage. 31, 1673-1681 (2006).
  17. Zanto, T. P., Gazzaley, A. Neural Suppression of Irrelevant Information Underlies Optimal Working Memory Performance. J Neurosci. 29, 3059-3066 (2009).
  18. Lenartowicz, A., Simpson, G. V., Haber, C. M., Cohen, M. S. Neurophysiological Signals of Ignoring and Attending Are Separable and Related to Performance during Sustained Intersensory Attention. J Cogn Neurosci. , 1-15 (2014).
  19. Daffner, K. R., et al. Does modulation of selective attention to features reflect enhancement or suppression of neural activity. Biol Psychol. 89, 398-407 (2012).
  20. Weissman, D. H., Warner, L. M., Woldorff, M. G. Momentary reductions of attention permit greater processing of irrelevant stimuli. NeuroImage. 48, 609-615 (2009).
  21. Shams, L., Kamitani, Y., Shimojo, S. Visual illusion induced by sound. Cognitive Brain Res. 14, 147-152 (2002).
  22. Di Luca, M., Machulla, T. K., Ernst, M. O. Recalibration of multisensory simultaneity: Cross-modal transfer coincides with a change in perceptual latency. J Vision. 9, (2009).
  23. Makeig, S., Jung, T. P., Bell, A. J., Ghahremani, D., Sejnowski, T. J. Blind separation of event-related brain response components. Psychophysiology. 33, S58-S58 (1996).
  24. Baillet, S., Mosher, J. C., Leahy, R. M. Electromagnetic brain mapping. IEEE Signal Processing Mag. 18, 14-30 (2001).
  25. Garcia-Perez, M. A. Forced-choice staircases with fixed step sizes asymptotic and small-sample properties. Vision Res. 38, 1861-1881 (1998).
  26. Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hilllyard, S. A., Johnson, R. J. R., Miller, G. A., Ritter, W., Ruchkin, D. S., Rugg, M. D., Taylor, M. J. Guidelines for using human event-related potentials to study cognition: Recroding standards and publication criteria. Psychophysiology. 37 (2), 127-152 (2000).
  27. Keil, A., Debener, S., Gratton, G., Junghofer, M., Kappenman, E. S., Luck, S. J., Luu, P., Miller, G. A., Yee, C. M. Committee Report: Publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology. 51 (1), 1-21 (2014).

Play Video

Diesen Artikel zitieren
Lenartowicz, A., Simpson, G. V., O’Connell, S. R., Cohen, M. S. Measurement of Neurophysiological Signals of Ignoring and Attending Processes in Attention Control. J. Vis. Exp. (101), e52958, doi:10.3791/52958 (2015).

View Video