Here, we present three protocols for thermal measurements in microfluidic devices.
Thermal measurement techniques have been used for many applications such as thermal characterization of materials and chemical reaction detection. Micromachining techniques allow reduction of the thermal mass of fabricated structures and introduce the possibility to perform high sensitivity thermal measurements in the micro-scale and nano-scale devices. Combining thermal measurement techniques with microfluidic devices allows performing different analytical measurements with low sample consumption and reduced measurement time by integrating the miniaturized system on a single chip. The procedures of thermal measurement techniques for particle detection, material characterization, and chemical detection are introduced in this paper.
Tres técnicas de medición térmicos micro-escala diferente se presentan en este artículo. Las tres configuraciones diferentes de dispositivos de microfluidos se utilizan para la detección térmica de partículas (TPD), la caracterización térmica (conductividad térmica y calor específico), y la detección colorimétrica de las reacciones químicas y las interacciones.
Detección de partículas térmica
Detectar y contar las partículas en dispositivos de microfluidos se utiliza ampliamente para aplicaciones medioambientales, industriales y biológicos 1. TPD es una de las aplicaciones novedosas de mediciones térmicas en dispositivos de microfluidos 2. El uso de transferencia de calor para detectar y contar las partículas basadas en el tamaño de las partículas reduce la complejidad, costo y tamaño del sistema. En otros métodos, la óptica complejos o mediciones eléctricas complejas y software avanzado de procesamiento de señales se utilizan para la detección de partículas.
Chara térmicacterization de sustancias líquidas Utilizando Micro-Calorímetro
Liquid caracterización térmica de la muestra es la segunda aplicación de medición térmica en dispositivos de microfluidos. Realización de calorimetría microescala reducirá el consumo de muestra y aumentar la precisión, ofreciendo mayor repetibilidad en comparación con los métodos convencionales de calorimetría, a granel. Los procedimientos para la medición de la conductividad térmica y calor específico utilizando el dispositivo de micro-calorímetro en el chip se presentan en otras partes 3. Los detalles de la técnica de tiempo de penetración de calor para la medición de la conductividad térmica y el análisis de la onda térmica (TWA) para las mediciones de calor específico en dispositivos de microfluidos se describen en la sección de protocolo.
Dispositivo de microfluidos Basado en Papel calorimétrico Bio-Química Detección en
Otra aplicación de medición térmica es la detección bioquímica en la microfluídica basados en papel. La acción capilar en elestructura porosa de papel lleva el líquido y evita los problemas de iniciación de burbujas en microcanales. Los mecanismos de detección más comunes en los dispositivos de microfluidos en papel son técnicas ópticas o electroquímicas. Detección óptica sufre de alta complejidad y la necesidad de software avanzado procesamiento de imágenes para cuantizar la señal detectada. Detecciones electroquímicos también están limitados debido a que sólo se pueden aplicar a las reacciones que producen subproductos activos. La plataforma recientemente introducido calorimétrico basado en papel sensor bioquímico 4 toma ventaja del sistema de microfluidos basado en papel y el mecanismo de detección térmica de la etiqueta libre. Los procedimientos de detección calorimétrica de la glucosa utilizando glucosa oxidasa (GOD) enzima en una plataforma de microfluidos basado en papel se presentan en la sección de protocolo.
El objetivo de este trabajo es demostrar las capacidades de las técnicas de medición térmica en dispositivos de microfluidos. El preparatio dispositivon, muestra de líquido detector de manejo y resistencia a la temperatura (RTD) de excitación del sensor y la medición se presentan en las siguientes secciones.
Different thermal measurement techniques in microfluidic devices and their respective setup procedures are presented in this work. These thermal measurement methods such as thermal conductivity monitoring, thermal penetration time, amplitude of AC thermal fluctuations, and amplitude measurement of the generated heat are used to detect specific substances and investigate different reactions and interactions.
The thermal time constant plays a key role in the aforementioned thermal measurement t…
The authors have nothing to disclose.
Apoyo financiero parcial de este trabajo fue proporcionado por la Fundación Nacional de Ciencia de Estados Unidos a través del Centro de Investigación Cooperativa Industria / Universidad de Equipos y Política ubicado en la Universidad de Wisconsin-Milwaukee (PII-0968887) y la Universidad de Marquette (PII-0968844) de agua. Damos las gracias a Glenn M. Walker, Woo-Jin Chang y Shankar Radhakrishnan útil para los debates.
Polydimethylsiloxane (PDMS) | Dow Corning | Sylgard 184 | |
PS beads – 90 um | Corpuscular | 100265 | |
PS beads – 200 um | Corpuscular | 100271 | |
Glycerol | SigmaAldrich | G5516 | |
GOD enzyme | SigmaAldrich | G7141 | |
Glucose Control Solution-Low | Bayer contour | Low Control | |
Glucose Control Solution-Normal | Bayer contour | Normal Control | |
Glucose Control Solution-High | Bayer contour | High Control | |
Chromatography filter paper | Whatman | 3001-845 | |
Glass | VWR | 48393-106 | |
Acrylic Film | Nitto Denko | 5600 | |
Glass syringe (1 mL) | Hamilton | 1001 | |
Syringe pump | New Era | NE-500 | |
knife plotter | Silhouette | portrait | |
Current Preamplifier | Stanford Research | SR-570 | |
Ocilloscope | Agilent | DSO 2420A | |
Signal Generator | HP | HP3324A | |
Lock-in Amplifire | Stanford Research | SRS-830 | |
Source/meter 2400 | Keithley | 2400 | |
Source/meter 2600 | Keithley | 2436A |