Here, we present three protocols for thermal measurements in microfluidic devices.
Thermal measurement techniques have been used for many applications such as thermal characterization of materials and chemical reaction detection. Micromachining techniques allow reduction of the thermal mass of fabricated structures and introduce the possibility to perform high sensitivity thermal measurements in the micro-scale and nano-scale devices. Combining thermal measurement techniques with microfluidic devices allows performing different analytical measurements with low sample consumption and reduced measurement time by integrating the miniaturized system on a single chip. The procedures of thermal measurement techniques for particle detection, material characterization, and chemical detection are introduced in this paper.
Три различных микро-масштабе методы измерения тепловых представлены в этой статье. Три различные конфигурации устройств микрожидкостных используются для обнаружения тепловой частиц (ТПД), тепловой характеристике (теплопроводность и теплоемкость), и калориметрического обнаружения химических реакций и взаимодействий.
Обнаружение Тепловая частиц
Обнаружение и подсчет частиц в микрофлюидных устройств широко используется для экологических, промышленных и биологических приложений 1. TPD является одним из новых приложений тепловых измерений в микрожидкостных устройств 2. Использование теплопередачу для обнаружения и подсчета частиц на основе размера частиц уменьшает сложность, стоимость и размер системы. В других методов, сложных или комплексных оптики электрических измерений и современное программное обеспечение обработки сигналов используются для детектирования частиц.
Тепловая Чараcterization жидких веществ с помощью Micro-калориметр
Жидкость образец тепловой характеристика Второе применение теплового измерения в микрофлюидных устройств. Выполнение микро-масштабе калориметрии снизит потребление образец и увеличить точность, предлагая более высокую повторяемость по сравнению с обычными методами, сыпучих калориметрии. Процедуры для теплопроводности и удельной тепловой измерения с использованием микро-калориметр устройство на чипе представлены в другом месте 3. Подробная информация о технике времени проникновения тепла для измерения теплопроводности и термического анализа волны (TWA) для измерений теплоемкости в микрофлюидных устройств описаны в разделе протокола.
Калориметрическое Био-химического обнаружения в бумажной Микрожидкостных Устройство
Другое применение теплового измерения биохимические обнаружение в бумажных микрофлюидики. Капиллярное действие впористая структура из бумаги несет жидкость и позволяет избежать проблем пузырь инициации в микро-каналов. Наиболее распространенные механизмы обнаружения в бумажных микрофлюидных устройств оптических или электрохимических методов. Оптическое детектирование страдает от высокой сложности и необходимость современного программного обеспечения для обработки изображений для квантования обнаруженный сигнал. Электрохимические обнаружений также ограничены, так как они могут быть применены только к реакциям, которые производят активные побочных продуктов. Недавно представила Калориметрический бумажной основе биохимического датчика платформа 4 использует бумажной основе микрофлюидного системы и механизма термического обнаружения этикеток бесплатно. Процедуры калориметрического выявления глюкозы с использованием оксидазы глюкозы (Бога) фермент в бумажной микрофлюидного платформы представлены в разделе протокола.
Целью данной работы является демонстрация возможности методов измерения тепловых в микрофлюидных устройств. Препараты устройствон, детектор обращение и термостойкость жидкий образец (RTD), возбуждение датчика и измерение представлены в следующих разделах.
Different thermal measurement techniques in microfluidic devices and their respective setup procedures are presented in this work. These thermal measurement methods such as thermal conductivity monitoring, thermal penetration time, amplitude of AC thermal fluctuations, and amplitude measurement of the generated heat are used to detect specific substances and investigate different reactions and interactions.
The thermal time constant plays a key role in the aforementioned thermal measurement t…
The authors have nothing to disclose.
Частичное финансовая поддержка для этой работы была предоставлена Национальным научным фондом США через кооперативного исследовательского центра промышленность / университет по водным оборудования и Политика расположенный в Университете Висконсин-Милуоки (МИП-0968887) и Университета Маркетт (МИП-0968844). Мы благодарим Гленна М. Уокер, Woo-Jin Chang и Шанкар Радхакришнан за полезные обсуждения.
Polydimethylsiloxane (PDMS) | Dow Corning | Sylgard 184 | |
PS beads – 90 um | Corpuscular | 100265 | |
PS beads – 200 um | Corpuscular | 100271 | |
Glycerol | SigmaAldrich | G5516 | |
GOD enzyme | SigmaAldrich | G7141 | |
Glucose Control Solution-Low | Bayer contour | Low Control | |
Glucose Control Solution-Normal | Bayer contour | Normal Control | |
Glucose Control Solution-High | Bayer contour | High Control | |
Chromatography filter paper | Whatman | 3001-845 | |
Glass | VWR | 48393-106 | |
Acrylic Film | Nitto Denko | 5600 | |
Glass syringe (1 mL) | Hamilton | 1001 | |
Syringe pump | New Era | NE-500 | |
knife plotter | Silhouette | portrait | |
Current Preamplifier | Stanford Research | SR-570 | |
Ocilloscope | Agilent | DSO 2420A | |
Signal Generator | HP | HP3324A | |
Lock-in Amplifire | Stanford Research | SRS-830 | |
Source/meter 2400 | Keithley | 2400 | |
Source/meter 2600 | Keithley | 2436A |