Summary

ルテニウムのシリーズの合成、キャラクタリゼーションと反応性<em> N</em> -triphos<sup> Phで</sup>錯体

Published: April 10, 2015
doi:

Summary

ルテニウムホスフィン錯体が広く水素化のような均質触媒反応のために使用される。 N -triphosリガンドN(CH 2のPPh 2)3を有する新規な三座ルテニウム錯体の一連の合成が報告されている。さらに、レブリン酸と二水素Ru- N -triphos複合体の化学量論反応が記載されている。

Abstract

本明細書において、我々は、窒素雰囲気下で、メタノール中のアンモニアとhydroxylmethyleneホスフィン前駆体のリン系マンニッヒ反応を介して三座ホスフィン配位子N(CH 2のPPh 2)3(N -triphos Ph)(1)の合成を報告している。 N -triphos Phはリガンド還流の約1時間後に溶液から沈殿し、窒素下で単純なカニューレ濾過手順を介して、分析的に純粋な単離することができる。還流下での[Ru 3(CO)12]N -triphos Phのリガンドの反応は、リガンド錯体におけるCOガスの発生を示した深赤色溶液を得る。錯体の橙色結晶の[Ru(CO)2 {N(CH 2のPPh 2)3}-κ3 P]は (2)RTに冷却して単離した。 31 P {1 H} NMRスペクトルは、低い周波数で特性が単一のピークを示した遊離リガンドと比較した。酸素との複合体2のトルエン溶液の反応は、炭酸塩、複合体の瞬間的な沈殿を生じたの[Ru(CO 3)(CO){N(CH 2のPPh 2)3}-κ3 P](3)空気安定としてオレンジ色の固体。高圧反応器中の水素の3 15の下のバーの後続の水素化は、二水素錯体[RUH 2(CO){N(CH 2のPPh 2)3}-κ3 P](4)、完全にXによって特徴付けられたγ線結晶学およびNMR分光法。複合体3および4は、潜在的にそのようなレブリン酸(LA)などのバイオマス由来製品を含む水素化反応の範囲のための有用な触媒前駆体である。複合体4は、きれいにRu(CO){N([与えるプロトン源の添加剤NH 4 PF 6の存在下でLAと反応することが見出されたCH 2のPPh 2)3}-κ3 P {CH 3 CO(CH 2)2 CO 2 H}-κ2 O](PF 6)(6)。

Introduction

ルテニウムホスフィンベースの複合体は、最も広く研究され、化学的に汎用性分子触媒の一部である。1-9は、典型的には、このようなルテニウム触媒は、錯体の電子、立体構造、ジオメトリ、および溶解度を決定する単環または二座配位子のいずれかを含む、かつ深く触媒活性に影響を与える。多座ホスフィン系は少なく広く、それらが金属中心に複数のリンドナーの大きなキレート効果により金属中心に高い安定性を付与することが知られているように、触媒作用のために研究されている。このような安定化は、触媒の完全性を確保する上で有利となり得る厳しい反応条件(より高い温度および圧力)そのようなリガンドの複合体安定化特性の下で、しかし、触媒作用のために望ましくないことがある。我々 10-12と他人13-18は、複雑な安定性と顔の COORを付与するために研究しているそのような多座ホスフィン配位子システムdinationジオメトリ三ホスフィンアームは、潜在的に、三座配位子を形成する頂端架橋窒素原子に結合している、いわゆるN -triphosリガンドシリーズ。これらの特定のリガンドへの主要な機能の1つは、それらが容易に入手できる二ホスフィン( 図1)からのリンベースのマンニッヒ反応を介して合成することができることを容易な方法であり、したがって、R基の種々のホスフィン高収率で通常調製することができる。と最小限のワークアップと。この方法の全体的な目標は、N -triphosリガンドを特色ルテニウム二水素錯体は、その後の触媒用途のためにアクセスすることのできる容易なルートを提供することである。近年、ルテニウム-トリホスベースの複合体は、より高い価値の化学物質へのそのようなレブリン酸などのバイオマス由来製品、19,20バイオエステル11,21および二酸化炭素22の水素化反応のための触媒として注目されている。それは有利であろうとして、またはすでに彼らがそのようなN -triphosリガンドとして、アクセスに合成が容易である場合は特に、報告されたシステムよりもアクティブのどちらかであるのRu-トリホス誘導体の範囲を拡大する。最も研究炭素中心アナログは、典型的には、低収量合成に苦しんでいると非常に空気に敏感な金属リン化物試薬を含み、より適応と準備をする方が簡単ですN -triphosリガンドとは異なり。10-18

N -triphosリガンドは唯一のモリブデン、タングステン、ルテニウム、ロジウム、金錯体は9出版物から報告されたと、比較的アンダー調査したまま。これはユニークな化合物が多数で、それぞれ、約50および900の記事がありますいるホウ素と炭素中心類似体、全く対照的である。それにもかかわらず、複合体を含むN個の -triphosは、私たちのように、プロキラルオレフィン23の触媒的不斉水素化に応用されているllのNの非対称cyclohydroaminationはγ-アレニルスルホンアミド-保護24はまた、部分配ホスホランを特徴とバルキーN -triphos配位子によって配位ルテニウム錯体は、シラン、有機化学の開発における重要なステップを活性化することが見出された。25

触媒反応で進行中の研究プログラムの一環として、当社は、ルテニウムの範囲N -triphos のPhプレ触媒を準備し、それらの化学量論的反応や触媒の可能性を調査しようとした。最初の25年以上前に報告されたN -triphos のPhのモリブデン錯体にもかかわらず、彼らのアプリケーションは、触媒的またはその他の方法で調査されていない。この作品は、一般的に未発達であるにもかかわらず、このような複雑な安定性などの多くの望ましい特徴を保有するN -triphos足場の適用可能性を示している。 。ここで我々は、への合成経路および特性を報告接触水素化反応に用途を見出すことができるルテニウムN -triphos Phの複合体一連。

Protocol

注:ドラフト内でのすべての合成を実行し、適切な安全性の問題が同定されており、対策がそれらから保護するために撮影した後にのみ。個人用保護具は、白衣、手袋、安全ゴーグルを含み、常に着用する。 N、N、N ' -トリス(diphenylphosphinomethylene)アミン、N(CH 2のPPh 2)3(N -triphos のPh)(1)の合成1 200ミリリットルにオーブンのシュ?…

Representative Results

N -triphos Phのリガンド (1)及びルテニウム錯体シリーズのRu(CO)2 {N(CH 2のPPh 2)3}-κ3 P](2)の[Ru(CO 3)(CO){N (CH 2のPPh 2)3}-κ3 P](3)との[Ru(H)2(CO){N(のPPh 2 CH 2)3}-κ3 P](4)1 H介して特徴付けら?…

Discussion

本明細書で我々は、三座ホスフィン配位子及びルテニウム錯体の一連の合成のための効率的な合成手順を記載している。 N -triphos Phのリガンド (1)を容易最小限のワークアップ手順を高収率で製造することができる。リガンドのこれらのタイプを合成するために使用されるこのリン系マンニッヒ反応は、非常に一般的であり、P原子上のR基が異なる?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

AP is grateful to Imperial College London for a PhD studentship via the Frankland Chair endowment. Johnson Matthey plc are also thanked for the loan of the precious metal salts used in this work.

Materials

Methanol Obtained from in-house solvent purification system: Innovative Technology, inc "pure solv" drying tower. Stored in ampules over activated molecular sieves under nitrogen.
Toluene
Diethyl Ether
Tetrahydrofuran (THF)
Acetonitrile
d6-Acetone VWR VWRC87152.0011 Store in fridge
Triethylamine Sigma-Aldrich TO886-1L Distilled and stored over activated molecular sieves under N2
2M Ammonia solution in methanol Sigma-Aldrich 341428-100ML Solution comes in a "Sure-Seal" bottle
NH4PF6 Sigma-Aldrich 216593-5G Store in desiccator
Levulinic Acid Acros Organics 125142500 Solid but melts close to room temperature
3 Å Molecular sieves Alfa Aesar LO5359 Activate by heating over night under vacuum
Schlenk flasks GPE Custom design
Dual-manifold Schlenk line GPE Custom design Dual-manifold of i) N2 that has been passed through a silica drying column and ii) vacuum.
Rotary vacuum pump Edwards RV3 A652-01-903
100 ml Autoclave Engineer's high pressure reactor Autoclave Engineer Custon design
Vortex Stirrer VWR 444-1378

Referenzen

  1. Bruneau, C., Dixneuf, P. H. . Ruthenium Catalysis and Fine Chemicals. , (2004).
  2. Naota, T., Takaya, H., Murahashi, S. -. L. Ruthenium-Catalyzed Reactions for Organic Synthesis. Chem. Rev. 98 (7), 2599-2660 (1998).
  3. Arockaim, P. B., Bruneau, C., Dixneuf, P. H. Ruthenium(II)-Catalyzed C-H Bond Activation and Functionalization. Chem. Rev. 112 (11), 5879-5918 (2012).
  4. Trost, B. M., Toste, F. D., Pinkerton, A. B. Non-metathesis ruthenium-catalyzed C-C bond formation. Chem. Rev. 101 (7), 2067-2096 (2001).
  5. Vougioukalakis, G. C., Grubbs, R. H. Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysis. Chem. Rev. 110 (3), 1746-1787 (2010).
  6. Lozano-Vila, A. M., Monsaert, S., Bajek, A., Verpoort, F. Ruthenium-based olefin metathesis catalysts derived from alkynes. Chem. Rev. 110 (8), 4865-4909 (2010).
  7. Samojlowicz, C., Bieniek, M., Grela, K. Ruthenium-based olefin metathesis catalysts bearing N-heterocyclic carbene ligands. Chem. Rev. 109 (8), 3708-3742 (2009).
  8. Alcaide, B., Almedros, P., Luna, A. G. r. u. b. b. s. &. #. 8. 2. 1. 7. ;. Ruthenium-Carbenes Beyond the Metathesis Reaction: Less Conventional Non-Metathetic Utility. Chem. Rev. 109 (8), 3817-3858 (2009).
  9. Conley, B. L., Pennington-Boggio, M. K., Boz, E., Discovery Williams, T. J. Applications, and Catalytic Mechanisms of Shvo’s Catalyst. Chem. Rev. 110 (4), 2294-2312 (2010).
  10. Miller, P. W., White, A. J. P. The preparation of multimetallic complexes using sterically bulky N-centered tipodal dialkyl phosphine ligands. J. Organomet. Chem. 695 (8), 1138-1145 (2010).
  11. Hanton, M. J., Tin, S., Boardman, B. J., Miller, P. Ruthenium-catalysed hydrogenation of esters using tripodal phosphine ligands. J. Mol. Catal. A. 346 (1-2), 70-78 (2012).
  12. Phanopoulos, A., Brown, N. J., White, A. J. P., Long, N. J., Miller, P. W. Synthesis, Characterization, and Reactivity of Ruthenium Hydride Complexes of N-Centered Triphosphine Ligands. Inorg. Chem. 53 (7), 3742-3752 (2014).
  13. Jin, G. Y. N.N.N-tris(phosphinomethylen)amine N.N.N’-tris(phosphinomethylene)hydrazine N.N.N’.N’-tetra(phosphinomethylene)hydrazine. Tetrahedron Lett. 22 (12), 1105-1108 (1981).
  14. Walter, O., Huttner, G., Kern, R. Preparation and Characterisation of N(CH2PPh2)3. N(CH2PPh2)3Mo(CO)3 and [HN(CH2PPh2)3Mo(CO)3]BF4. Z. Naturforsch. 51b, 922-928 (1996).
  15. Fillol, J. L., Kruckenberg, A., Scherl, P., Wadepohl, H., Gade, L. H. Stitching Phospholanes Together Piece by Piece: New Modular Di- and Tridentate Stereodirecting Ligands. Chem. Eur. J. 17 (50), 14047-14062 (2011).
  16. Rodríguez, L. -. I., Roth, T., Fillol, J. L., Wadepohl, H., Gade, L. H. The More Gold–The More Enantioselective: Cyclohydroaminations of γ-Allenyl Sulfonamides with Mono Bis, and Trisphospholane Gold(I) Catalysts. Chem. Eur. J. 18 (12), 3721-3728 (2012).
  17. Scherl, P., Kruckenberg, A., Mader, S., Wadepohl, H., Gade, L. H. Ruthenium η4-Trimethylenemethane Complexes Containing Tripodal Phosphanomethylamine Ligands. Organometallics. 31 (19), 7024-7027 (2012).
  18. Scherl, P., Wadepohl, H., Gade, L. H. Hydrogenation and Silylation of a Double-Cyclometalated Ruthenium Complex: Structures and Dynamic Behavior of Hydrido and Hydridosilicate Ruthenium Complexes. Organometallics. 32 (15), 4409-4415 (2013).
  19. Geilen, F. M. A. Selective and Flexible Transformation of Biomass-Derived Platform Chemicals by a Multifunctional Catalytic System. Angew. Chem. Int. Ed. 49 (32), 5510-5514 (2010).
  20. Geilen, F. M. A., Engendahl, B., Hölscher, M., Klankermayer, J., Leitner, W. Selective Homogeneous Hydrogenation of Biogenic Carboxylic Acids with [Ru(TriPhos)H]+: A Mechanistic Study. J. Am. Chem. Soc. 133 (36), 14349-14358 (2011).
  21. Van Engelen, M. C., Teunissen, H. T., de Vries, J. G., Elsevier, C. J. Suitable ligands for homogeneous ruthenium-catalyzed hydrogenolysis of esters. J. Mol. Catal. A. 206 (1-2), 185-192 (2003).
  22. Wesselbaum, S., vom Stein, T., Klankermayer, J., Leitner, W. Hydrogenation of Carbon Dioxide to Methanol by Using a Homogeneous Ruthenium–Phosphine Catalyst. Angew. Chem. Int. Ed. 51 (30), 7499-7502 (2012).
  23. Fillol, J. L., Kruckenberg, A., Scherl, P., Wadepohl, H., Gade, L. H. Stitching Phospholanes Together Piece by Piece: New Modular Di- and Tridentate Stereodirecting Ligands. Chem. Eur. J. 17 (50), 14047-14062 (2011).
  24. Rodríguez, L. -. I., Roth, T., Fillol, J. L., Wadepohl, H., Gade, L. H. The More Gold–The More Enantioselective: Cyclohydroaminations of γ-Allenyl Sulfonamides with Mono Bis-, and Trisphospholane Gold(I) Catalysts. Chem. Eur. J. 18 (12), 3721-3728 (2012).
  25. Scherl, P., Wadepohl, H., Gade, L. H. Hydrogenation and Silylation of a Double-Cyclometalated Ruthenium Complex: Structures and Dynamic Behavior of Hydrido and Hydridosilicate Ruthenium Complexes. Organometallics. 32 (15), 4409-4415 (2013).
  26. Bennett, B. K., Richmond, T. G. An Inexpensive, Disposable Cannula Filtration Device. J. Chem. Educ. 75 (8), 1034 (1998).
  27. Judd, C. S. Proton NMR Basics. J. Chem. Educ. 72 (8), 706 (1995).
  28. Rhodes, L. F., Venanzi, L. M. Ruthenium(II)-Assisted Borohydride Reduction of Acetonitrile. Inorg. Chem. 26 (16), 2692-2695 (1987).
  29. Bakhmutov, V. I. In-depth NMR and IR study of the proton transfer equilibrium between [{MeC(CH2PPh2)3}Ru(CO)H2] and hexafluoroisopropanol. Can. J. Chem. 79, 479-489 (2001).

Play Video

Diesen Artikel zitieren
Phanopoulos, A., Long, N., Miller, P. The Synthesis, Characterization and Reactivity of a Series of Ruthenium N-triphosPh Complexes. J. Vis. Exp. (98), e52689, doi:10.3791/52689 (2015).

View Video