여기서 우리는 생활에 초음파 미세 기포 조영제, 고립 늦은 임신 단계 쥐의 배아를 주입하는 프로토콜을 제시한다. 이 방법은 관류의 매개 변수 및 조영 증강 고주파 초음파 영상을 이용한 혈관 내 배아 분자 마커의 연구를 가능하게한다.
Ultrasound contrast-enhanced imaging can convey essential quantitative information regarding tissue vascularity and perfusion and, in targeted applications, facilitate the detection and measure of vascular biomarkers at the molecular level. Within the mouse embryo, this noninvasive technique may be used to uncover basic mechanisms underlying vascular development in the early mouse circulatory system and in genetic models of cardiovascular disease. The mouse embryo also presents as an excellent model for studying the adhesion of microbubbles to angiogenic targets (including vascular endothelial growth factor receptor 2 (VEGFR2) or αvβ3) and for assessing the quantitative nature of molecular ultrasound. We therefore developed a method to introduce ultrasound contrast agents into the vasculature of living, isolated embryos. This allows freedom in terms of injection control and positioning, reproducibility of the imaging plane without obstruction and motion, and simplified image analysis and quantification. Late gestational stage (embryonic day (E)16.6 and E17.5) murine embryos were isolated from the uterus, gently exteriorized from the yolk sac and microbubble contrast agents were injected into veins accessible on the chorionic surface of the placental disc. Nonlinear contrast ultrasound imaging was then employed to collect a number of basic perfusion parameters (peak enhancement, wash-in rate and time to peak) and quantify targeted microbubble binding in an endoglin mouse model. We show the successful circulation of microbubbles within living embryos and the utility of this approach in characterizing embryonic vasculature and microbubble behavior.
조영 증강 초음파 영상 시각화하고 혈관 환경의 특성을 미세 기포 조영제를 사용한다. 이러한 에이전트는 미세 순환, 혈관 및 심장 혈관 기능의 비 침습적 평가를 할 수 있습니다. 또한, 기포 표면의 개질이 가능 혈관 질환의 분자 초음파 영상을 혈관 신생, 염증 및 아테롬성 경화증의 임상 1,2- 애플리케이션에서 입증 된 바와 같이, 내피 표적 바이오 마커에 대한 결합 미세 기포가 발생할 수있다. 콘트라스트 향상 초음파 따라서 혈관 질병과 건강 상태에 영향 3-5 복잡하고 다양한 환경을 식별하기 위해 사용될 수있다.
년의 과거 수 년, 마이크로 버블 영상의 유용성에 대한 관심이 다양한 마우스 배아 모델을 확장했다. 포유류의 개발 모델로, 배아 미세 기포 맥관계 내로 도입 생리 향상개발 순환 시스템 (예를 들어, 혈류, 심장 출력) 및 형질 전환 사례 및 심장 질환 6,7의 대상으로 돌연변이 마우스 모델에서의 연구는 심장 혈관 기능을 변경하는 방법 유전 적 요인에 대한 통찰력을 얻을 수 있습니다. 사실, 양적 및 질적 2D는 배아 뇌 혈관 분석 이미 8을 달성했다. 더욱이, 마우스의 배아는 생체 내에서 혈관 마커 타겟팅 결합 미세 기포를 검사하는 우수한 모델로서 제시한다. Bartelle 등. (9)는, 예를 들어, Biotag – 피라 유전자 변형 배아에 바인딩 및 혈관 해부학을 검토하여 대상을 평가하기 위해 태아 심장의 심실에 아비딘 미세 기포를 도입했습니다. 병원에이 기술을 번역에서 중요한 벤치 마크 – 이질 동형 접합 마우스 모델의 생성은 분자 초음파의 양적 특성을 정의하는 것을 목표로 종양 모델 연구를위한 대리로 사용할 수 있습니다.
<p cl엉덩이 = "jove_content는"> 마이크로 버블은 자주 개복술 8-10 통해 노출로 단일 배아 심장 내 주사를 통해 순환 배아에 도입된다. 자궁 내 주사 그러나 난제에 직면하고있다. 이러한 주입 안내, 어머니 표면화 배아 움직임에 대응하는 필요, 어머니 혈역학 생존을 유지하고 (11)에 의한 출혈 합병증 마취 장기적인 효과를 어드레싱 표면화 배아를 포함한다. 따라서, 조사의 목적은 거실 절연 말기 배아 미세 기포 (12) 내로 주입하는 기술을 개발하는 것이었다. 이 옵션은 분사 제어 및 위치, 장애물없이 촬상면의 재현성 간단한 이미지 분석 및 정량의 관점에서 더 많은 자유를 제공한다.본 연구에서는 FO 살아있는 쥐의 배아에 미세 기포를 주입위한 새로운 절차 개요R 마이크로 버블 운동 동작을 연구하고의 목적은 내인성 내피 세포 표면 마커에 결합 마이크로 버블을 목표로 공부. 비선형 대비 특정 초음파 영상은 피크 향상 (PE), 세척 된 속도와 시간 고립 E17.5 배아에 (TTP)을 피크를 포함하는 기본 관류 매개 변수들로 측정하는 데 사용됩니다. 우리는 또한 활성 혈관 (13)의 부위에서 혈관 내피 세포에서의 고 발현에 endoglin은 임상 적으로 관련된 대상 함수 트랜스 제닉 마우스 모델의 배아 endoglin 손실 분자 초음파의 정량적 특성을 평가하기위한 배아 모델의 타당성을 입증 . endoglin 타겟 (MB E) 쥐 이소 IgG의 2 제어 (MB C) 및 타겟이 불분명 한 (MB U) 마이크로 버블의 접착 이형 endoglin (영어 +/-)과 동형 접합 endoglin (영어 +가 / +) 표현 배아에서 평가된다. 대상 BINDI 분석NG 분자 초음파 endoglin 유전자형을 구별 정량화 초음파 분자 수준 수용체 밀도를 관련시킬 수 있음을 보여준다.
초음파 조영제가 말기 임신 마우스 배아 및 비선형 대비 이미지로 주입 하였다는 관류 매개 변수를 측정하기 위해 취득 및 바인딩 마이크로 버블을 대상으로 하였다. 배아의 혈관계 내의 미세 기포 성공적인 이미징은 다수의 인자, 제 인 배아 생존에 의존했다. 모든 장치 및 장치가 분사의 시작에서 배아의 자궁 분리에 필요한 시간을 최소화하기 위해 사전에 준비 하였다. 쥐 배아 마취 단일 또는 …
The authors have nothing to disclose.
This work was supported by the Terry Fox Program of the National Cancer Institute of Canada.
Reagents | Company | Catalog Number | Comments/Description |
Antibodies (biotinylated, eBioscience) | Antibody choice depends on the experiment | ||
rat isotype IgG2 control | eBioscience | 13-4321-85 | This antibody/microbubble combination is often required as experimental control |
biotin anti-mouse CD309 | eBioscience | 13-5821-85 | |
Biotinylated rat MJ 7/18 antibody to mouse endoglin | In house hybridoma | Outside antibodies may also be appropriate: we have used eBioscience (13-1051-85 ) in the past | |
Distilled water | |||
Embryo media | |||
500 mL Dulbecco’s Modified Eagle’s Medium with high glucose | Sigma | D5796 | |
50 mL Fetal Bovine Serum | ATCC | 30-2020 | lot # 7592456 |
Hepes | Gibco | 15630 | 5mL, 1M |
Penicillin-Streptomycin | Gibco | 15140-122 | 5 mL, 10,000 units Pen., 10,000 ug Strep |
Ethanol, 70% | |||
Ice | |||
Paraformaldehyde | Sigma | 76240 | 4% |
Phosphate Buffered Saline [1x] | Sigma | D8537 | 1x, w/o calcium chloride & magnesium chloride |
Pregnant mouse, CD-1 | Charles River Laboratories Inc. | ||
0.9% sodium chloride (saline) | Hospira | 0409-7984-11 | |
Ultrasound contrast agent, target ready and untargeted | MicroMarker; VisualSonics Inc. | ||
Ultrasound gel (Aquasonic 100, colourless) | CSP Medical | 133-1009 | |
Equipment | |||
Cell culture plates (4) : 100×20 mm | Fisher Scientific | 08-772-22 | |
Cell culture plates (12) : 60×15 mm | Sigma | D8054 | |
Centrifuge | Sorvall Legend RT centrifuge | ||
Conical tubes, 50 mL BD Falcon | VWR | 21008-938 | |
Diluent | Beckman Coulter | Isoton II Diluent, 8448011 | |
Dissection scissors (Wagner) | Fine Science Tools | Wagner 14068-12 | |
Forceps (2), Dumont SS (0.10×0.06 mm) | Fine Science Tools | 11200-33 | |
Forceps, splinter | VWR | 25601-134 | |
Glass beaker, 2 L (Griffin Beaker) | VWR | 89000-216 | |
Glass capillaries, 1×90 mm GD-1 with filament | Narishige | GD-1 | |
Glass needle puller | Narishige | PN-30 | |
Gloves | Ansell | 4002 | |
Gross anatomy probe | Fine Science Tools | 10088-15 | |
Hot plate | VWR | 89090-994 | |
Ice bucket | Cole Parmer | RK 06274-01 | |
Imaging Platform | VisualSonics Inc. | Integrated Rail System | |
Light source, fiber-optic | Fisher Scientific | 12-562-36 | Ideally has adjustable arms |
Luers (12), polypropylene barbed female ¼-28 UNF thread | Cole Parmer | 45500-30 | |
Micro-ultrasound system, high-frequency | VisualSonics Inc. | Vevo2100 | |
Needles, 21 gauge (1”) | VWR | 305165 | |
Particle size analyzer | Beckman Coulter | Multisizer 3 Coulter Counter | |
Perforated spoon (Moria) | Fine Science Tools | MC 17 10373-17 | |
Pins (6), black anodized minutien 0.15 mm | Fine Science Tools | 26002-15 | |
Pipettors [2-20 uL, 20-200uL, 100-1000uL] | Eppendorf | Research Plus adjustable 3120000038; 3120000054; 3120000062 | |
Pipettor tips [2-200uL, 50-1000uL] | Eppendorf | epT.I.P.S. 22491334; 022491351 | |
Scissors | |||
Sylgard 184 Silicone Elastomer Kit | Dow Corning | ||
Tubing, Tygon laboratory 1/32×3/32” | VWR | 63010-007 | |
Wooden applicator stick (swab, cotton head) | VWR | CA89031-270 | |
Surgical microscope 5-8x magnification | Fisher Scientific | Steromaster | |
Syringes, 1 mL Normject | Fisher | 14-817-25 | |
Syringes (10), 30 mL | VWR | CA64000-041 | |
Syringe infusion pump | Bio-lynx | NE-1000 | |
Thermometer, -20-110oC | VWR | 89095-598 | |
Timer | VWR | 33501-418 | |
Tubes, Eppendorf | VWR | 20170-577 | |
Tube racks (3) | VWR | 82024-462 | |
Ultrasound transducer, 20 MHz | VisualSonics Inc. | MS250 | |
Vannas-Tubingen, angled up | Fine Science Tools | 15005-08 |