Summary

Mechanische vatverwonding in zebravis embryo's

Published: February 17, 2015
doi:

Summary

This article describes a method for creating a mechanical vessel injury in zebrafish embryos. This injury model provides a platform for studying hemostasis, injury-related inflammation, and wound healing in an organism ideally suited for real-time microscopy.

Abstract

Zebrafish (Danio rerio) embryos have proven to be a powerful model for studying a variety of developmental and disease processes. External development and optical transparency make these embryos especially amenable to microscopy, and numerous transgenic lines that label specific cell types with fluorescent proteins are available, making the zebrafish embryo an ideal system for visualizing the interaction of vascular, hematopoietic, and other cell types during injury and repair in vivo. Forward and reverse genetics in zebrafish are well developed, and pharmacological manipulation is possible. We describe a mechanical vascular injury model using micromanipulation techniques that exploits several of these features to study responses to vascular injury including hemostasis and blood vessel repair. Using a combination of video and timelapse microscopy, we demonstrate that this method of vascular injury results in measurable and reproducible responses during hemostasis and wound repair. This method provides a system for studying vascular injury and repair in detail in a whole animal model.

Introduction

Zebrafish have been used extensively to study a variety of topics in vascular biology, including vascular development, angiogenesis, and hematopoietic development and pathology1-3. Embryos develop a functional circulation as well as leukocytes and other components of the innate immune system by 1 day post fertilization (dpf) 1,4,5. The conservation of the inflammatory and leukocyte response to injury has made the zebrafish embryo an informative model for such diverse inflammatory processes as tuberculous infection, enterocolitis, and tissue regeneration6-9. Zebrafish embryos have been used to study injury-related inflammation particularly in the context of epithelial wounding and the neutrophil response10,11. Injury to the embryo results in a highly conserved cellular response from cells at the injury site and the innate immune cells recruited to respond to the injury and regulate its resolution11,12. Other injury models have used focused laser pulses to spatially localize injury to specific cell types including neurons, muscle cells, and cardiomyocytes13-15.

Zebrafish embryos have been used as a model to study hemostasis and thrombosis in conditions of pharmacological and genetic manipulation, using both mechanical and laser-induced thrombus formation16-19. Components of the coagulation cascade appear to be well-conserved and transgenics have allowed for detailed studies of thrombocyte and fibrin deposition at the site of coagulation17,20,21. The procedure presented in this paper complements these methods by providing a system for studying mechanical vessel injury resulting in vessel breach, thrombus formation and resolution, and vessel repair.

Protocol

OPMERKING: De procedures met behulp van zebravis werden goedgekeurd door UCSF Institutional Animal Care en gebruik Comite. 1. Voorbereiding van Gereedschap Steek minutia pin in een penhouder en klem de pin. Met behulp van fijne punt tang, buig de punt van de pen om een ​​lichte haak te creëren. Voor manipulatie en stabilisatie van het embryo tijdens blessure, buig het einde van een 28 gauge ½ inch naald gemonteerd op een insulinespuit behulp punttang. </l…

Representative Results

Mechanische vaatletsel werd uitgevoerd op 2 dpf embryo (Figuur 2A – C). Letsel leidt tot een snelle en betrouwbare coagulatie respons, zoals gemeten door de tijd om het stoppen bloedingen (figuur 2D). Om te bepalen of verschillen in de coagulatie reactie meetbaar is het antistollingsmiddel hirudine toegediend aan het embryo door injectie in het kanaal van Cuvier onmiddellijk voor verwonding (5-10 nl van 1 eenheid per pl hirudine opgelost in water) (voor demonstratie van…

Discussion

Zebravis zijn met succes gebruikt als model voor verschillende soorten wonden waaronder laser verwonding 13-15, laser geïnduceerde trombose 16 en epitheliale 10 verwonden. Wij rapporteren een methode mechanische verwonding die eenvoudig uit te voeren en geeft een gecontroleerde letsel bij een in vivo model dat zeer vatbaar realtime microscopie. Letsel heeft een snelle en meetbare hemostatische reactie en reproduceerbare wondherstel programma dat kan worden gevolgd met video en …

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank Drs. Stephen Wilson and Lisa Wilsbacher for helpful discussions. This work was supported in part by NIH HL054737.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Minutia Pins Fine Science Tools 26002-10 Tip diameter 0.0125 mm, rod diameter 0.1 mm
Pin Holder Fine Science Tools 26016-12
Dumont #5 Fine Tip Forceps Fine Science Tools 11254-20
Glass Depression Slide Aquatic Eco-Systems M30
Low Melting Agarose Lonza  50081 Preheated to 42 º C
N-Phenylthiourea (PTU) Sigma Aldrich P7629
3-aminobenzoic acid (Tricaine) Sigma Aldrich E10521
Hirudin Sigma Aldrich H7016
Glass bottom imaging dishes Mattek P35G-1.5-14-C
Dissecting microscope Olympus SZH10
Fluorescence microscope Zeiss Axio Observer
Aquarium salts Instant Ocean
Insulin syringe with 28G1/2 needle Becton Dickinson  329461

Referenzen

  1. Gore, A. V., Monzo, K., Cha, Y. R., Pan, W., Weinstein, B. Vascular development in the zebrafish. Cold Spring Harb Perspect Med. 2 (5), a006684 (2012).
  2. Boatman, S., et al. Assaying hematopoiesis using zebrafish. Blood Cells Mol Dis. 51 (4), 271-276 (2013).
  3. Ellett, F., Lieschke, G. J. Zebrafish as a model for vertebrate hematopoiesis. Curr Opin Pharmacol. 10 (5), 563-570 (2010).
  4. Liu, J., Stainier, D. Y. Zebrafish in the study of early cardiac development. Circ Res. 110 (6), 870-874 (2012).
  5. Traver, D., et al. The zebrafish as a model organism to study development of the immune system. Adv Immunol. 81, 253-330 (2003).
  6. Lieschke, G. J., Trede, N. S. Fish immunology. Curr Biol. 19 (16), R678-R682 (2009).
  7. Lesley, R., Ramakrishnan, L. Insights into early mycobacterial pathogenesis from the zebrafish. Curr Opin Microbiol. 11 (3), 277-283 (2008).
  8. Oehlers, S. H., et al. A chemical enterocolitis model in zebrafish larvae that is dependent on microbiota and responsive to pharmacological agents. Dev Dyn. 240 (1), 288-298 (2011).
  9. Gemberling, M., Bailey, T. J., Hyde, D. R., Poss, K. D. The zebrafish as a model for complex tissue regeneration. Trends Genet. 29 (11), 611-620 (2013).
  10. LeBert, D. C., Huttenlocher, A. Inflammation and wound repair. Semin Immunol. , (2014).
  11. Henry, K. M., Loynes, C. A., Whyte, M. K., Renshaw, S. A. Zebrafish as a model for the study of neutrophil biology. J Leukoc Biol. 94 (4), 633-642 (2013).
  12. Niethammer, P., Grabher, C., Look, A. T., Mitchison, T. J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature. 459 (7249), 996-999 (2009).
  13. Rosenberg, A. F., Wolman, M. A., Franzini-Armstrong, C., Granato, M. In vivo nerve-macrophage interactions following peripheral nerve injury. J Neurosci. 32 (11), 3898-3909 (2012).
  14. Otten, C., Abdelilah-Seyfried, S. Laser-inflicted injury of zebrafish embryonic skeletal muscle. J Vis Exp. (71), e4351 (2013).
  15. Matrone, G., et al. Laser-targeted ablation of the zebrafish embryonic ventricle: a novel model of cardiac injury and repair. Int J Cardiol. 168 (4), 3913-3919 (2013).
  16. Jagadeeswaran, P., Carrillo, M., Radhakrishnan, U. P., Rajpurohit, S. K., Kim, S. Laser-induced thrombosis in zebrafish. Methods Cell Biol. 101, 197-203 (2011).
  17. Vo, A. H., Swaroop, A., Liu, Y., Norris, Z. G., Shavit, J. A. Loss of fibrinogen in zebrafish results in symptoms consistent with human hypofibrinogenemia. PLoS One. 8 (9), e74682 (2013).
  18. Liu, Y., et al. Targeted mutagenesis of zebrafish antithrombin III triggers disseminated intravascular coagulation and thrombosis, revealing insight into function. Blood. , (2014).
  19. Jagadeeswaran, P., Liu, Y. C. A hemophilia model in zebrafish: analysis of hemostasis. Blood Cells Mol Dis. 23 (1), 52-57 (1997).
  20. Jagadeeswaran, P., Gregory, M., Day, K., Cykowski, M., Thattaliyath, B. Zebrafish: a genetic model for hemostasis and thrombosis. J Thromb Haemost. 3 (1), 46-53 (2005).
  21. Lin, H. F., et al. Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. Blood. 106 (12), 3803-3810 (2005).
  22. Rosen, J. N., Sweeney, M. F., Mably, J. D. Microinjection of zebrafish embryos to analyze gene function. J Vis Exp. (25), (2009).
  23. Benard, E. L., et al. Infection of zebrafish embryos with intracellular bacterial pathogens. J Vis Exp. (61), (2012).
  24. Jagadeeswaran, P., Sheehan, J. P. Analysis of blood coagulation in the zebrafish. Blood Cells Mol Dis. 25 (3-4), 3-4 (1999).
  25. Jin, S. W., Beis, D., Mitchell, T., Chen, J. N., Stainier, D. Y. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development. 132 (23), 5199-5209 (2005).
  26. Traver, D., et al. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol. 4 (12), 1238-1246 (2003).
  27. Lawson, N. D., Weinstein, B. M. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol. 248 (2), 307-318 (2002).
  28. Renshaw, S. A., et al. A transgenic zebrafish model of neutrophilic inflammation. Blood. 108 (13), 3976-3978 (2006).
  29. Hall, C., Flores, M. V., Storm, T., Crosier, K., Crosier, P. The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev Biol. 7, 48 (2007).
  30. Ellett, F., Pase, L., Hayman, J. W., Andrianopoulos, A., Lieschke, G. J. mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood. 117 (4), e49-e56 (2011).
  31. Gray, C., et al. Simultaneous intravital imaging of macrophage and neutrophil behaviour during inflammation using a novel transgenic zebrafish. Thromb Haemost. 105 (5), 811-819 (2011).
  32. Bellido-Martin, L., Chen, V., Jasuja, R., Furie, B., Furie, B. C. Imaging fibrin formation and platelet and endothelial cell activation in vivo. Thromb Haemost. 105 (5), 776-782 (2011).
  33. Bielczyk-Maczynska, E., et al. A loss of function screen of identified genome-wide association study Loci reveals new genes controlling hematopoiesis. PLoS Genet. 10 (7), e1004450 (2014).

Play Video

Diesen Artikel zitieren
Clay, H., Coughlin, S. R. Mechanical Vessel Injury in Zebrafish Embryos. J. Vis. Exp. (96), e52460, doi:10.3791/52460 (2015).

View Video