In vivo spatio-temporal interactions of pathogen and immune defenses at the mucosal level are not easily imaged in existing vertebrate hosts. The method presented here describes a versatile platform to study mucosal candidiasis in live vertebrates using the swimbladder of the juvenile zebrafish as an infection site.
점막 병원균에 대한 초기 방어는 상피 장벽과 선천성 면역 세포로 구성됩니다. 모두의 immunocompetency, 그들의 상호는 감염에 대한 보호를 위해 매우 중요하다. 병원체와 상피 및 선천성 면역 세포의 상호 작용은 가장 복잡한 문제는 시간과 공간에 펼쳐지는 생체 내에서 조사하고 있습니다. 그러나, 기존 모델은 점막 수준에서 병원균과 전투의 쉬운 공간 – 시간 영상을 허용하지 않습니다.
여기에 개발 된 모델은 청소년 제브라 피쉬의 swimbladder에 곰팡이 병원균, 칸디다 알비 칸스의 직접 주입하여 점막 감염을 만듭니다. 얻어진 감염 질환의 점막 상피에 걸쳐 개발 및 선천성 면역 세포 행동의 고해상도 영상화를 가능하게한다. 이 방법의 다양성은 산도로 이어지는 면역 이벤트의 상세한 순서를 조사하기 위해 호스트의 심문을 허용agocyte 모집 특정 세포 유형과 보호 분자 경로의 역할을 조사하고. 또한, 면역 공격의 함수로서 병원체의 동작은 형광 단백질 발현을 C. 동시에 사용하여 묘화 될 수 알비 칸스. 호스트 병원체 상호 작용의 증가 된 공간 해상도는 설명 빠른 swimbladder 해부 기술을 사용하는 것도 가능하다.
여기에 기재된 점막 감염 모델은 점막 칸디다증의 연구를위한 가치있는 도구 만드는 간단하고 높은 재현성이다. 이 시스템은 또한 일반적으로 상피 표면을 통해 감염, 마이코 박테리아 세균 또는 바이러스 성 미생물로 다른 점막 병원균에 광범위하게 번역 될 수있다.
Mucosal infections can lead to life threatening bloodstream infections due to the damage of the epithelial barrier, which allows pathogens access to the systemic environment1,2. In addition, mucosal infections can also cause significant immunopathology even when contained externally3-5. The commensal unicellular fungus Candida albicans is present in the majority of the population in the oral cavity and other mucosal sites6-9. Although normally contained by innate and adaptive immune responses, innate immune defects and medical interventions can lead to severe mucosal candidiasis. The assault on the epithelial barrier results in an increased risk of life threatening disseminated disease as well as immunopathology, as in the case of vulvo-vaginal candidiasis, additionally C. albicans colonization has been linked with lung immune homeostasis10,11. Disseminated candidiasis is now the fourth most common bloodstream infection in intensive care units12 and mortality as high as 40% makes it a major concern. Due to the increase in immunomodulatory treatments for patients with autoimmune diseases, cancer or organ transplants, it is imperative to understand the interaction between this pathogen and the mucosal immune compartment.
The majority of cell biological advances regarding C. albicans-cell interactions at the mucosal level come from in vitro13-15 and murine models16-18. Both these approaches have distinct advantages, but the ability to image live cells at high resolution in an intact host has limited the temporal and spatial characterization of the infection. For these studies, there is the need for an in vivo model where the interaction of pathogen, innate immune and epithelial cells can be visualized in an intact vertebrate host.
The zebrafish has emerged as an invaluable tool for the understanding of human disease, mainly due to its transparency and amenability to genetic manipulation. Cell and organ development have been imaged in exquisite detail, which has led to the description of novel immune cell behaviors, such as T cell behavior in the developing thymus19 or the battle between intracellular mycobacteria and phagocytes20-22. Recent work has described intestinal microbe-host interactions in zebrafish and shown that microbial colonization of the intestinal tract affects host intestinal physiology and resistance to other infections23,24. Furthermore, infection through the gut epithelium has been described for several pathogens.
In contrast to the intestinal tract, the swimbladder represents a more isolated and complementary mucosal model. This organ is an extension of the developing gut tube and forms anteriorly to the liver and pancreas25,26. It produces surfactant, mucus and antimicrobial peptides27,28 and anatomically, as well as ontogenetically, this organ is considered a homologue of the mammalian lung29,30. Since the pneumatic duct remains connected to the gut in the zebrafish, this allows for immersion infection to occur naturally. Remarkably, the only known naturally occurring infections of fish with Candida species are C. albicans infections in the swimbladder31. We recently described an experimental immersion infection model where C. albicans infects the swimbladder, and found that this infection recapitulates some of the hallmarks of C. albicans-epithelial interaction in vitro32,33.
In the method presented here, the original immersion infection model is improved by directly injecting C. albicans into the swimbladder of 4 days post fertilization (dpf) zebrafish. This allows for precise temporal control of infection as well as a highly reproducible inoculum. It permits detailed intravital imaging, coupled with the versatility of the zebrafish model. As an example of what can be done with this method, we present the spatio-temporal dynamics of C. albicans growth along with neutrophil recruitment to the site of infection. Because zebrafish swimbladder tissue is challenging to image intravitally, we also present a rapid swimbladder dissection technique that improves fluorescence signal and microscopic resolution. These methods expand the toolbox for fungal, immunological, and aquaculture research as well as describing a novel infection route that may be translated to model other fungal, bacterial or viral infections of mucosal surfaces.
swimbladder의 미세 주입 질환 모델의 발전과 한계
여기에 제시된 모델은 Gratacap 등에 설명 된 점막 칸디다증 침수 모델의 확장이다 (2013).; 이는 제어 된 감염 시간의 장점, 높은 재현성 감염 도즈, 따라서 효율 향상을 추가한다. 우리는 여기서 비 침습적 훌륭한 세부 사항에 감염 역학의 시간적 문서뿐만 아니라 swimbladder의 높은 해상도 생체 이미징을 허용하는 ?…
The authors have nothing to disclose.
저자는 아낌없이 α-catenin의를 제공하기 위해 박사 르 트린 박사 토빈 감사 : 황수정 물고기 라인과 빌 잭맨 우리 자신의 실험실에서 촬영을 할 수 있도록합니다. 저자는 자금 출처 국립 보건원 (보조금 5P20RR016463, 8P20GM103423 및 R15AI094406)과 USDA 인정 (프로젝트 # ME0-H-1-00517-13). 이 원고는 주요 농업 및 임업 실험 역 게시 번호 3371로 게시됩니다.
Name | Company | Catalog Number | Comments |
1.7 mL tubes | Axygen | MCT-175-C | |
Deep Petri dishes | Fisher Scientific | 89107-632 | |
Transfer pipettes | Fisher Scientific | 13-711-7M | |
Yeast Extract | VWR Scientific | 90000-726 | |
Peptone | VWR Scientific | 90000-264 | |
Dextrose | Fisher Scientific | D16-1 | |
Agar | VWR Scientific | 90000-760 | |
Fine tweezers (Dumont Dumoxel #5) | Fine Science Tools | 11251-30 | |
Wooden Dowels | VWR Scientific | 10805-018 | |
Low Melt Agarose | VWR Scientific | 12001-722 | |
Flaming Brown Micropipette Puller | Sutter Instruments | P-97 | |
Borosilicate capillary | Sutter Instruments | BF120-69-10 | |
MPPI-3 Injection system | Applied Scientific Instrumentation | MPPI-3 | |
Back Pressure Unit | Applied Scientific Instrumentation | BPU | |
Micropipette Holder kit | Applied Scientific Instrumentation | MPIP | |
Foot Switch | Applied Scientific Instrumentation | FSW | |
Micromanipulator | Applied Scientific Instrumentation | MM33 | |
Magnetic Base | Applied Scientific Instrumentation | Magnetic Base | |
Tricaine methane sulfonate | Western Chemical Inc. | MS-222 | |
Dissecting Scope | Olympus | SZ61 top SZX-ILLB2-100 base | |
Confocal Microscope | Olympus | IX-81 with FV-1000 laser scanning confocal system | |
20x microscope objective | Olympus | UPlanSApo 20x/0.75 | |
Roller drum | New Brunswick Scientific | TC-7 | |
Microloader pipette tips | Eppendorf | 930001007 | |
Glass culture tubes (16 x 150 mm) | VWR Scientific | 60825-435 | |
NaCl | VWR Scientific | BDH4534-500GP | |
KCl | VWR Scientific | BDH4532-500GP | |
MgSO4 | VWR Scientific | BDH0246-500GP | |
HEPES (Corning) | VWR Scientific | BDH4520-500GP | |
Children clay (Play-Doh) | Hasbro | ||
CaCl2 | Fisher Scientific | C69-500 | |
Methylene Blue | VWR Scientific | VW6276-0 | |
PTU | Sigma | P7629-10G | |
Petri dishes | Fisher Scientific | FB0875712 | |
Hemocytometer (Hausser scientific) | VWR Scientific | 15170-172 | |
Type A immersion oil | Blue Marble Products | 51935 | |
Centrifuge | Eppendorf | 5424 | |
Vortex Genie | VWR Scientific | 14216-184 | |
Agarose (Lonza) | VWR Scientific | 12001-870 | |
Na2HPO4 | Fisher Scientific | S374-500 | |
KH2PO4 | Fisher Scientific | P285-500 | |
Fishing wire | Stren | ||
96 well imaging plate (Sensoplate) | Greiner Bio-One | 655892 | |
High vacuum grease (Dow Corning) | VWR Scientific | 59344-055 | |
Microslide (25 x 75 mm) | VWR Scientific | 48300-025 | |
Cover slips (18 x 18 mm), No 1.5 | VWR Scientific | 48366-045 | |
15 cm Petri dish (Olympus plastics) | Genesee Scientific | 32-106 | |
Glycerol (EMD chemicals) | VWR Scientific | EMGX0185-5 | |
24-well culture dish (Olympus plastics) | Genesee Scientific | 25-107 | |
Weight boats (8.9 cm) | VWR Scientific | 89106-766 |