合成的有意设计的金属 – 有机骨架材料,激活和表征是具有挑战性的,尤其是当构建块是不相容的或不需要的多晶型物都在期望的形式热力学上有利的。我们描述了如何通过超临界CO 2的干燥溶剂辅助的接头交换,粉末X射线衍射中的毛细血管和激活的应用程序,可以解决这些挑战。
金属 – 有机框架已经引起了研究关注数量惊人,因为他们是有吸引力的候选人,许多工业和技术的应用。他们的签名属性是其超高的孔隙率,但是它赋予了一系列的挑战,当涉及到双方构建他们,与他们一起工作。确保通过连接器/节点组装所需财政部的化学和物理功能到可以选择造成困难的高度多孔框架,少孔和热力学更稳定的同族元素( 例如 ,其他多晶型,链中的类似物)往往优先采用常规的合成方法获得。一旦获得了期望的产物,其表征通常需要地址的并发症而产生,例如,旅客分子损失或微晶的择优取向是可能的专门技术。最后,访问MOFs材料里面大的空隙中使用APPL涉及气体ications可能会产生问题,因为框架可能会受到除去溶剂分子(溶剂热合成的残余)的过程中坍塌。在本文中,我们描述了在我们的实验室无论是解决或避免这些问题经常使用的合成与表征方法。该方法包括溶剂辅助的接头交换,在毛细管中的粉末X射线衍射,并用超临界CO 2的干燥材料活化(空腔抽真空)。最后,我们提供了一个协议,用于确定用于将所述的Brunauer-埃米特 – 特勒分析氮吸附等温线的合适的压力区域,从而估计MOFs材料以良好的精度的表面积。
金属-有机骨架(MOFs)是一类由金属基节点( 例如 ,锌离子 ,锌4 O 6 +,锆6 O 4(OH)4 12 +,3的Cr(H 2 O晶体配位聚合物的通过有机连接子连接)2 6+,锌2(COO)4)( 例如 ,二,三,四和六羧酸盐,咪唑类1,dipyridyls; 见图1)2及其高度有序的(并且因此适合于。高水平的表征)的结构,并结合自身特殊的表面积(达7000 平方米 /克)3赋予他们的潜力,有吸引力的候选应用的转换,从储氢4和碳捕获5,6催化, 7,8感应9,10和捕光11毫不奇怪,MOFs材料已引起INTE了大量休息在科学和材料工程领域;在同行评审期刊MOFs材料出版物的数量已经成倍增加,在过去的十年中,与目前每年出版的1000-1500文章。
MOFs材料具有理想的性能的合成,但是,带来了一系列的挑战。吸引力,也就是其特殊的孔隙率,其实他们的主要点可能会出现,具体的MOFs材料,对他们的成功发展的最大障碍之一。这些材料的框架内的大空的空间存在有损于它们的热力学稳定性;作为一个结果,当MOFs材料都从头合成( 即 ,由溶剂热反应的金属前体和有机连接子在一个步骤中),其构成积木常常倾向于聚集成更致密,少孔(和不太理想对于某些应用,如储气库)类似物12的程序后,再版oducibly获得期望的拓扑结构的框架已经形成,财政部的需要,以使其在需要的气体吸附过程的应用程序进行处理。因为MOFs材料在溶液中合成的,该笼和新生长的MOF晶体的通道通常是充分的高沸点溶剂用作反应介质;在除去溶剂而不诱导下的毛细力框架的崩溃需要一系列被称为“MOF激活”专门程序13最后,为了确保最终产品的纯度,并能对基本性质,MOFs材料确凿的研究需要进行严格的特征在于在它们的合成。鉴于MOFs材料是配位聚合物,这是在常规溶剂中高度不溶,这过程通常涉及用于这类材料特别开发了几种技术。许多这些技术依赖于X射线衍射(XRD),这是唯一的套房d,来提供这些结晶材料的高级别表征。
通常情况下,MOF合成在所谓从头方式采用金属前体(无机盐)和有机连接子之间一锅溶剂热反应。此方法存在多种限制,因为它们很少有控制权的MOF部件到框架的结构,将所得产物并不总是具有所需的拓扑结构。一个容易实施的方法,它允许绕过与从头 MOF合成相关联的问题是溶剂辅助链接交换(要买, 图2)。14-16此方法包括使容易获得的MOF晶体所需的连接物的浓溶液,直到女儿连接器完全取代那些家长。该反应进行中的单晶到单晶的方式 – 即,尽管在更换接头机智欣框架内,该材料保留了原始亲MOF的拓扑结构。销售基本上允许MOFs材料的合成与连接器拓扑的组合,很难获得新生 。到目前为止,这种方法已经成功地实施,以克服各种合成财政部的挑战,如控制连锁,17扩展财政部笼子,18,19合成高能量多晶20,催化活性材料20,21和现场隔离的开发保护反应的试剂。22
新合成的MOFs几乎总是有通道填充有它们的合成过程中使用的溶剂。此溶剂必须从框架移除,以便采取其气体吸附性能的优点。传统上,这是由实现)交换溶剂中的通道(通常喜欢为n的高沸点溶剂,N二甲基甲酰胺,二甲基甲酰胺)具有更多的挥发性溶剂像浸泡财政部晶体在所选择的溶剂中,b)加热MOF晶体在真空下以延长时间抽空溶剂,或c)一种这两种技术的组合,乙醇或二氯甲烷中。然而这些活化方法,不适合于许多高表面热力学上脆弱的MOFs可能遭受这样恶劣的条件下框架塌陷。的一种技术,它允许溶剂除去来自MOF的笼子,同时避免了大量的框架塌陷的发生,是激活通过超临界CO 2干燥23在此过程中,MOF结构内的溶剂置换成液态CO 2。的CO 2是随后加热加压超过其临界点,并最终允许从框架蒸发。由于超临界二氧化碳不具有毛细力,这个活化处理是强制少MOFs材料比传统的真空加热,并有启用访问大多数已发布至今超高布鲁诺尔-埃米特-泰勒(BET)表面积,包括财政部与冠军表面积。3,24,25
在本文中,我们描述了从头合成,作为一个很好的模板销售反应的代表性方便财政部-的柱,黑臭框架溴YOMOF 26日的长和比较弱结合N,N' -二-4 -pyridylnaphthalenetetracarboxydiimide(DPNI)柱子可与内消旋 -1,2 -二(4 -吡啶基)-1,2 -乙二醇(dped),以产生一个同构MOF SALEM-5(图2)。18此外,我们的轮廓容易地交换要采取需要的步骤来激活SALEM-5超临界二氧化碳干燥,并成功收集其N 2等温线,并获得其比表面积。我们还描述了各种技术相关的MOF表征,如X射线晶体学和1 H-NMR波谱法(NMR)。
MOF结晶是一个微妙的过程,可以通过在该描述的合成条件的多个参数的甚至轻微的变化被抑制。因此,需要特别注意的制备反应混合物时,应采取的。所述有机连接子的纯度应先于合成的发作1 H NMR证实,由于即使少量的杂质的存在是已知的完全防止结晶或导致的不希望的结晶产物的形成。极性,高沸点溶剂如DMF,N,N'二甲基乙酰胺(DMA),N,N'-diethylformamide(DEF)或?…
The authors have nothing to disclose.
这项研究是由能源,基础能源科学办公室,化学科学,地球科学和生物科学部的下奖DE-FG02-12ER16362美国能源部的支持。
Name of Material/ Equipment | Company | Catalog number | Comments/Description |
6’’ Pasteur pipet | VWR | 14673-010 | For transferring MOF crystals |
9’’ Pasteur pipet | VWR | 14673-043 | For separating liquid solution from MOF crystals |
1-dram vials | VWR | For preparation of NMR samples | |
2-dram vials | VWR | 66011-088 | For small-scale SALE reactions |
4-dram vials | VWR | 66011-121 | For de novo pillared-paddlewheel MOF synthesis |
NMR tube Grade 7 | VWR | 897235-0000 | |
NMR instrument Avance III 500 MHz | Bruker | N/A | |
Oven | VWR | 414004-566 | For solvothermal MOF reactions |
Sonicator | Branson | 3510-DTH | |
Balance | Mettler-Toledo | XS104 | |
Superctitical CO2 dryer | Tousimis™ Samdri® | 8755B | For activation of pillared-paddlewheel MOFs |
Activation dish | N/A | N/A | |
Tristar II 3020 | Micromeritics | N/A | For collection of gas isotherms/measurement of BET surface area |
X-ray diffractometer | Bruker | N/A | Kappa geometry goniometer, CuKα radiation and Powder-diffraction data collection plugin. |
Capillary tubes | Charles-Supper | Boron-Rich BG07 | Thin walled Boron Rich capillary 0.7mm diameter |
Beeswax | Huber | WAX | sticky wax for specimen fixation |
Modeling Clay | Van Aken | Plastalina | |
CO2 (l) | N/A | N/A | |
N2 (l) | N/A | N/A | |
N2 (g) | N/A | N/A | |
DMF | VWR | MK492908 | For MOF reactions and storage |
Ethanol | Sigma-Aldrich | 459844 | For solvent exchange before supercritical drying |
Zn(NO3)2 × 6 H2O | Fluka | 96482 | |
dped | TCI | D0936 | |
dpni | Synthesized according to a published procedure | ||
Br-tcpb | Synthesized according to a published procedure | ||
D2SO4 | Cambridge Isotopes | DLM-33-50 | For MOF NMR |
d6-DMSO | Cambridge Isotopes | DLM-10-100 | For MOF NMR |