Un dispositivo integrado, la incorporación de una célula y triplete-triplete aniquilación solar de conversión ascendente unidad sensibilizada por colorante fue producido, proporcionando una mayor cosecha de la luz, de una sección más amplia del espectro solar. Con los niveles de irradiación modestos se demostró una respuesta mejorada de manera significativa a los fotones de baja energía, produciendo una cifra récord de mérito para las células solares sensibilizadas por colorante.
La escasa respuesta de las células solares sensibilizadas por colorante (DSCs) a la luz roja e infrarroja es un obstáculo importante para la consecución de mayores eficiencias fotocorrientes y por lo tanto mayores. Fotones de conversión ascendente a modo de aniquilación triplete-triplete (TTA-UC) es una técnica atractiva para el uso de estos fotones de baja energía desperdiciados de otro modo para producir fotocorriente, mientras que no interfiere con el desempeño photoanodic de una manera perjudicial. Además de esto, TTA-UC tiene un número de características, distintos de otros fotones de conversión ascendente tecnologías señaladas, lo que hace que sea especialmente adecuado para el acoplamiento con la tecnología DSC. En este trabajo, un sistema probado TTA-UC de alto rendimiento, que comprende un sensibilizador de porfirina paladio y el emisor rubreno, se combina con un DSC de alto rendimiento (D149 utilizando el tinte orgánico) en un dispositivo integrado. El dispositivo muestra una respuesta aumentada a la luz sub-banda prohibida en todo el rango de absorción de la sub-unidad de TTA-UC que resulta en la más alta fidelidadfigura de mérito para la conversión ascendente asistida rendimiento DSC hasta la fecha.
Células solares sensibilizadas por colorante (DSCs) se han proclamado como un concepto prometedor en asequible de captación de energía solar 1-3. A pesar de este entusiasmo, comercialización generalizada aún tiene que ocurrir. Varias razones se han propuesto para este, con una cuestión apremiante es la relativamente alta energía de la aparición de absorción, lo que limita la eficiencia alcanzable recolección luz de estos dispositivos 4. Aunque esto se puede superar, la reducción de la aparición de absorción está típicamente acompañado por una caída en el voltaje de circuito abierto, que se erosiona de manera desproporcionada a cualquier ganancia en la densidad de corriente 5, 6.
El funcionamiento general de DSC implica la transferencia de electrones desde un colorante fotoexcitado a un semiconductor (normalmente TiO 2), seguido de la regeneración del colorante oxidado por un mediador redox. Ambos procesos parecen requerir fuerzas motrices importantes (potenciales) a fin de proceder con una alta eficiencia 7 </sup>. Con tales pérdidas inherentes significativos, se hace evidente que la aparición absorción óptima para estos dispositivos es bastante alta en energía. Problemas similares existen para la fotovoltaica orgánica (OPV), debido una vez más a las grandes fuerzas motrices químicos necesarios para la separación de la carga efectiva. En consecuencia, las predicciones de los límites de la eficiencia de conversión de energía solar a eléctrica superiores a los dispositivos de unión simple basado en estas dos tecnologías implican absorbentes con amplios intervalos de banda (efectividad) 4.
Con el fin de superar el problema de recolección de luz planteado anteriormente, se han adoptado una serie de enfoques. Esto incluye la "tercera generación" 8 enfoques de estructuras tándem 9, 10 y fotones conversión ascendente de 11-14.
Recientemente 11 se informó de un dispositivo integrado compuesto por un electrodo de trabajo DSC y mostrador, con una aniquilación triplete-triplete basado conversión ascendente (TTA-UC) sistema incorporado ena la estructura. Este elemento TTA-UC fue capaz de recoger la luz roja transmitida a través de la capa activa y químicamente convertir (como se describe en detalle a continuación) a mayores fotones de energía que podrían ser absorbidos por la capa activa de la DSC y generar fotocorriente. Hay dos puntos importantes a tener en cuenta acerca de este sistema. En primer lugar, TTA-UC tiene muchas ventajas potenciales sobre otros sistemas de conversión ascendente de fotones 11; en segundo lugar, demuestra una arquitectura viable (prueba de principio) para la incorporación de TTA-UC, que había estado ausente de la literatura hasta TTA-UC a ese punto.
El proceso de TTA-UC 15-24 implica la excitación de moléculas de sensibilizador '', en este caso porfirinas Pd, por la luz con energía por debajo de la energía de inicio del dispositivo. Los sensibilizadores-excitados simples experimentan un rápido cruce entre sistemas al estado triplete de menor energía. Desde allí, se puede transferir energía a un triplete-aceptar 'emisor y # del estado fundamental8217; especies como rubreno, siempre y cuando la transferencia está permitido por la energía libre 25. El primer estado triplete de rubreno (T 1) es mayor que la mitad de la energía de su primer estado excitado singlete (S 1), pero menos de la mitad de la energía de T 2, lo que significa que un complejo de encuentro de dos rubrenes-triplete excitado puede aniquilar a dar una molécula singlete excitado emisor (y el otro en el estado fundamental) con una probabilidad bastante alta. Otros estados, estadísticamente predijo, es más probable energéticamente inaccesible para rubreno 26. La molécula de singlete excitado rubreno entonces puede emitir un fotón (como por fluorescencia) con suficiente energía para excitar el tinte en el electrodo de trabajo de la DSC. Este proceso se muestra en la Animación 1.
TTA-UC ofrece una serie de ventajas en comparación con otros sistemas de comunicaciones unificadas, como una gama ancha de absorción y la naturaleza incoherente 27, 28, por lo que es una opción atractiva para couPling con DSC (así como OPV). TTA-UC se ha demostrado que funciona a intensidades de luz relativamente bajos y en condiciones de luz difusa. Tanto DSC y OPV son más eficientes en el régimen de baja intensidad de luz. Concentración solar es cara y sólo se justifica por su alta eficacia, los dispositivos de alto costo. El relativamente alto rendimiento de los sistemas TTA-UC en condiciones de baja iluminación intensidad es atribuible al proceso que implica cromóforos sensibilizador con bandas de absorción fuerte, ancha en concierto con de larga duración estados triplete que son capaces de difundir con el fin de entrar en contacto con especies que interactúan . Además, TTA-UC se ha encontrado que tienen una alta eficiencia intrínseca a partir de un estudio cinético 26.
Aunque TTA-UC funciona a baja intensidad de luz, todavía hay una relación cuadrática entre la intensidad de la luz incidente y la luz emitida (por lo menos en bajas intensidades de luz). Esto es debido a la naturaleza del proceso bimolecular. Para tener en cuentapara esto y las condiciones experimentales variadas (en particular de intensidad de luz) reportadas por los diferentes grupos, una figura de mérito del sistema (FOM) debe ser empleado para medir la mejora del rendimiento ofrecido por la conversión ascendente. Esta FoM se ha definido como d j SC / ʘ, donde d j SC es el aumento de la corriente de cortocircuito (por lo general determinada por la integración del fotón incidente para cargar Eficiencia Carrier, IPCE, con y sin el efecto de conversión ascendente) y ʘ es la solar eficaz concentración (basado en el flujo de fotones en la región relevante, que es la absorción Q-banda del sensibilizador) 2 29.
En este documento, se informa de un protocolo para la producción y correcta caracterización de un dispositivo DSC-TTA-UC integrada, prestando especial atención a las posibles trampas en las pruebas del dispositivo. Se espera que esto sirva como una base para seguir trabajando en este campo.
Este protocolo proporciona un medio para lograr fotón up-conversión mejorada DSC y el detalle sobre cómo medir correctamente un dispositivo de este tipo. El FoM permite el simple cálculo de mejoras d j SC anticipados que se espera en diferentes intensidades de luz, incluso a 1 sol. Los valores que se muestran aquí son invariantes con la intensidad de luz (inserción de la figura 4), como por la expectativa cuando el sistema está por debajo de su umbral de saturación 33.</sup…
The authors have nothing to disclose.
A.N. acknowledges contributions from the Australian Renewable Energy Agency (ARENA) and the Australian National Fabrication Facility (ANFF). This research project is funded by the Australian Solar Institute (6-F020 and A-023), with contributions from The New South Wales Government and the University of Sydney. Aspects of this research were supported under Australian Research Council’s Discovery Projects funding scheme (DP110103300). Equipment was purchased with support from the Australian Research Council (LE0668257).
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
(tetrakis(3,5-di-tert-butylphenyl)-6’-amino-7’-nitro-tetrakisquinoxalino[2,3-b'7,8-b''12,13-b'''17,18-b''''-porphyrinato) palladium(II)) | in house | in house | Chem. Commun., 4851–4853 (2007) |
1,2-dimethyl-3-propylimidazolium iodide | Solaronix | 33150 | Material warning: Irritant |
405 nm longpass filter | Semrock | BLP01-405R-25 | – |
670 nm laser | Thorlabs | LDS5 + CPS198 | – |
Acetone | Chemsupply | AA008-20L-P | Material warning: Flammable |
Acetonitrile | Sigma | 271004 | Material warning: Flammable |
Alumina | Alfa Aesar | 12733 | – |
Alumina | Leeco | 810-782 | – |
Back filling chamber | Sistema | 1303 | Kilip it round, modified |
Benzene | Scharlau | BE0033 | Material warning: Toxic |
BNC cable | Jaycar | RG- 59U | – |
Cerasolzer | MBR | CS186 | – |
Chopper wheel | Thorlabs | MC1000A | – |
Control software | in house | in house | Written in LabVIEW |
Current Amplifier | Standford Research | SR 570 | – |
D149 dye | 1m | OSO149 | – |
Dental burr | Priority dental supplies | 835.104.008 | – |
Detergent | Palmolive | Original | – |
Diamond wheel | Frameco | 14220 | – |
Drill | Dremmel | 220 | – |
Dynamic dignal acquisition device | National Instruments | USB-4431 | Analog to Digital |
Ethanol | Univar | 214 | Material warning: Flammable |
F:SnO2 glass | Hartford | TEC8 | 2.3mm, < 8 Ω/□ |
Glovebox | IT systems | – | – |
H2PtCl6 | Sigma | 334472 | Material warning: corrosive |
Hot melt adhesive gasket | Solaronix | Meltronic 1170-25 | Surlyn |
Hot melt adhesive gasket | Solaronix | Meltronix 1170-60 | Surlyn |
Hotplate | Harry Gestigkeit | PR 5 3T / PZ28-3T | – |
Hotplate | IKA | RCT basic | – |
Image analysis software | National Institutes for Health | Image-J | – |
Iodine | Sigma | 326143 | Material warning: corrosive |
Laser engraver | Universal Laser Systems | PLS6WM | – |
Liquid Nitrogen | Air Liquide | – | |
Lithium Iodide | Aldrich | 518018 | Material warning: toxic |
Methoxypropionitrile | Sigma | 65290 | Material warning: Flammable |
Mirror | Thorlabs | PF10-03-P01 | – |
Mirror mount | Thorlabs | KM100 | – |
Monochromator | Spectral Products | CM110 | – |
Neutral density filters | Edmund Industrial Optics | 64-352 | – |
Parabolic mirror | Newport | 50329AL, 50338AL | – |
Photodiode | Newport | 918D-UV-OD3 | – |
Power meter | Newport | 1936-C | – |
Rubrene | Sigma | 551112 | – |
Semi-automatic screen printer | Keywell | KY-500FH | – |
Spray pyrolyser | Glaskeller | – | – |
Tape | 3M | Magic Tape | – |
Terminal block | Jaycar | HM3194 | – |
tert-Butanol | Sigma | 360538 | Material warning: Flammable |
TiCl4 | Sigma | 89545 | Material warning: corrosive |
Tile | Johnson tiles | – | – |
Tile cutter | DTA | DTA-310 | – |
TiO2 paste | Dyesol | NR18-T | – |
Titanium diisopropoxide bis(acetylacetonate) (75% in isopropanol) | Aldrich | 325252 | Material warning: Flammable |
Ultrasonic soldering iron | MBR | USS-9200 | – |
UV cure epoxy | Dymax | 425 | Material warning: Irritant |
UV cure system | Dymax | BlueWave 50 | – |
UV Visible Spectrophotometer | Varian Cary | 1E | – |
Vacuum cuvette | Custom made | Custom made | – |
Vacuum pump | N/A | Rotary backed diffusion pump | – |
Wipes | Kimtech | 34120KC | Kimwipes |
Xe lamp | Energetiq | LDLSTM EQ-1500 | White light source |