Rastreamento de vapores explosivos TNT e RDX coletados em tubos de dessorção térmica cheia de absorventes foram analisados por meio de um sistema de dessorção a temperatura programada acoplado a GC com um detector de captura de elétrons. A análise instrumental é combinada com o método de deposição líquido direto para reduzir a variabilidade da amostra e conta para a instrumentação deriva e perdas.
O depósito de líquido directo de padrões de solução em tubos de dessorção térmica cheio de sorvente é usado para a análise quantitativa de amostras de vapor explosivas vestigiais. O método de deposição direta líquido produz uma maior fidelidade entre a análise de amostras de vapor ea análise de padrões de solução do que usar métodos de injeção separados para vapores e soluções, ou seja, amostras coletadas em tubos de coleta de vapor e padrões preparadas em frascos de solução. Além disso, o método pode ser responsável por perdas de instrumentação, o que o torna ideal para minimizar a variabilidade e detecção de vestígios química quantitativa. Cromatografia em fase gasosa com detector de captura de elétrons é uma configuração de instrumentação sensível ao nitro-energética, tais como TNT e RDX, devido à sua afinidade relativamente alta de elétrons. Contudo, a quantificação de vapor destes compostos é difícil sem padrões de vapor viáveis. Assim, eliminam a necessidade de padrões de vapor, combinandoa sensibilidade da instrumentação com um protocolo de deposição de líquido directamente para analisar amostras de vapor explosivas vestigiais.
Cromatografia Gasosa (GC) é um núcleo de técnica de análise instrumental de Química Analítica e é sem dúvida tão onipresente quanto um prato quente ou equilíbrio em um laboratório de química. Instrumentação GC pode ser utilizado para a preparação, a identificação e quantificação de uma multiplicidade de compostos químicos e podem ser acoplados a uma variedade de detectores, tais como detectores de ionização de chama (FID), detectores foto-ionização (PIDs), detectores de condutividade térmica ( TCDs), detectores de captura de elétrons (ECD) e espectrômetros de massa (MS), dependendo dos analitos, a metodologia e aplicação. As amostras podem ser introduzidas através de uma entrada de grupo / splitless padrão quando se trabalha com soluções para pequenas amostras, enseadas análise headspace especializados, contínuo fase micro-extração (SPME) seringas ou sistemas de dessorção térmica. GC-MS é muitas vezes a técnica padrão usada em aplicações de validação e verificação de técnicas de detecção, alternativas ou emergentes por causa de sua utilidade, flexibilidade,eo poder de identificação com bases de dados estabelecidas químicos e bibliotecas 1 -. 7 GC e sua amostragem relacionada e componentes de detecção é ideal para análises químicas de rotina e mais especializado, desafiando aplicações analíticas.
O pedido de análise de interesse crescente para militar, segurança interna, e empresas comerciais é traçar detecção de vapor explosivo, com detecção incluindo a identificação e quantificação. Detecção de vestígios de vapor de explosivo é um desafio único química analítica porque os analitos, tais como 2,4,6-trinitrotolueno (TNT) e ciclotrimetilenetrinitramina (RDX) têm propriedades físicas que os tornam particularmente difíceis de manusear e separado usando mais amplo, a análise química mais genérico metodologias. A pressões relativamente baixas e de vapor (ppm v) concentração sub partes por milhão por volume de vapor saturado, combinadas com coeficientes de atrito relativamente elevado, necessitcomeu protocolos especiais de amostragem, instrumentação e métodos de quantificação 8 -. 12 A GC acoplado a um detector de captura de elétrons (ECD) ou espectrômetro de massa (MS) é um método eficaz para quantificar analitos explosivos, especificamente dinitrotoluene (DNT), TNT e RDX . 6,13 – 17 GC-ECD é particularmente útil para compostos nitro-enérgica devido à sua afinidade relativamente elevada de electrões. A Agência de Proteção Ambiental dos EUA (EPA) criou métodos padrão para detecção de analitos explosivo usando GC-ECD e GC-MS, mas estes métodos têm-se centrado em amostras em solução, tais como água subterrânea, e não amostras coletadas na fase de vapor. 2 , 18 – 23 A fim de detectar vapores explosivos, protocolos de amostragem alternativos devem ser utilizados, tais como coleta de vapor com tubos de amostras de dessorção térmica cheia de absorventes, mas a detecção quantitativa continua a ser difícil devido à falta de padrões de vapor de umª métodos de calibração que não conta para tubos de amostras e instrumentação perdas.
Recentemente, os métodos de quantificação utilizando sistemas de dessorção térmica com um sistema de entrada arrefecida (TDS-CIS), acoplado a um GC-ECD foram desenvolvidos por TNT e RDX vapores. 24,25 As perdas associadas com a instrumentação TDS-CIS-GC-ECD para traço vapores explosivos foram caracterizados e contabilizados de exemplo curvas de calibração usando um método de deposição direta líquido sobre os tubos de amostras dessorção térmica cheia de absorventes. No entanto, a literatura focada em instrumentação caracterização e desenvolvimento de métodos, mas nunca realmente amostrados, analisados, quantificados ou vapores explosivos, apenas as normas de solução. Aqui, o foco está no protocolo de amostragem e quantificação vapores explosivos. O protocolo e metodologia pode ser expandida para outros analitos e traçar vapores explosivos, como tetranitrato de pentaeritritol (PETN).
A reprodutibilidade é um atributo essencial para a quantificação de vestígios de vapores explosivos utilizando o método de deposição directa líquido com TDS-CIS-GC-ECD instrumentação, e Desvio Padrão Relativo (RSD) é frequentemente usado como uma métrica para a reprodutibilidade. Temos experimentado RSDs para a reprodutibilidade inter e intra-amostra de aproximadamente 5% para TNT e 10% para RDX. Qualquer RSD acima de 15% é utilizado como um indicador para verificar as fontes comuns de variação que reduz…
The authors have nothing to disclose.
O apoio financeiro foi fornecido pelo Departamento de Homeland Security and Direcção Ciência Tecnologia.
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
2,4,6-Trinitrotoluene (TNT) | Accu-Standard | M-8330-11-A-10X | 10,000 ng μL-1 |
Cyclotrimethylenetrinitramine (RDX) | Accu-Standard | M-8330-05-A-10X | 10,000 ng μL-1 |
3,4-Dinitrotoluene (3,4-DNT) | Accu-Standard | S-22988-01 | 1000 ng μL-1 |
Tenax® TA Vapor Sample Tubes | Gerstel | 009947-000-00 | Tenax® 60/80 |
CIS4 Liner | Gerstel | 014652-005-00 | |
Transfer Line Ferrule | Gerstel | 001805-008-00 | |
Inlet Liner Ferrule | Gerstel | 001805-040-00 | |
CIS4 Ferrule | Gerstel | 007541-010-00 | |
ECD Detector Ferrule | Aglient | 5181-3323 | |
DB5-MS Column | Res-Tek | 12620 |