Summary

电生理记录从<em>果蝇</em> Labellar味感器

Published: February 26, 2014
doi:

Summary

本协议描述的由labellar味觉神经元在果蝇发射动作电位反应细胞外记录。

Abstract

昆虫的外围味道响应可以有力地调查与电生理技术。这里介绍的方法使研究人员直接和定量测量味觉反应,反映了感官输入,昆虫的神经系统从它的环境味觉刺激接收。该协议概述了在利用这项技术的所有关键步骤。在组装的电装备,如选择的必要设备和一个合适的环境记录的关键步骤,圈定。我们还描述了记录作出适当的参考和记录电极如何准备,并促味剂的解决方案。我们详细地描述用于通过插入玻璃参比电极成飞,以固定所述长鼻制备昆虫的方法。我们显示通过味觉神经元响应于一个糖和一个苦味化合物烧制的电脉冲的痕迹。该协议的某些方面为technically具有挑战性的,我们包括可能​​遇到的一些常见的技术挑战,如缺乏信号或噪音过大的系统,和潜在的解决方案广泛的描述。该技术具有局限性,如不能交付时间上复杂的刺激,观察背景发射前夕刺激交付,或使用不溶于水的呈味物质方便。尽管有这些限制,这项技术(包括在协议中引用的微小变化)是一种标准,用于记录果蝇神经元对味道的化合物广泛接受的过程。

Introduction

味觉允许的昆虫以检测可溶性的化学物质种类繁多并且起着一种营养物质的接受了重要的作用,或一种有毒或毒性1的抑制。味道也被认为在择偶中发挥作用,通过信息素1-5的检测。这些重要而多样化的功能所做的昆虫味觉系统调查的令人信服的目标进入感觉系统如何翻译环境因素纳入有关的行为输出。

果蝇味觉系统的主要单位是味道的头发,或感器。分子通过孔在其尖端2,6进入感器。感器上发现的唇瓣,腿,翅缘,咽6。在唇瓣,感受器的数量和位置是千篇一律。有感器基于长度3形态类:长(L),中间体(I),和短(S )感器7,8。每个感器包含两个(I-型)或4(L-和S-型)味觉受体神经元(GRNS)9。不同GRNS应对不同类别的味觉刺激的:苦,糖,盐和渗透压7,10和表达味觉受体8,11-13的不同子集。只有我和S型感器含有苦响应GRNS 8,10。该GRNS项目的subesophageal神经节(SOG)和其活化味分子被传递到用于解码的更高中枢神经系统,从而导致行为反应6。数量相对较少的神经元和顺从分子和行为分析使果蝇味觉系统的味觉系统的一般调查一个很好的模型。相对难易程度,系统可以通过基因突变或GAL4-UAS表达系统来操作也可作为一种有价值的工具14,15。

ontent“>因为这些感受器从唇瓣的表面突出,它们使电生理学优良的目标。的GRNS的烧成可以使用外记录进行监控。历史上,侧壁的记录方法,其使用插入玻璃电极感器来记录神经细胞的活动,26已被使用,但是,这种方法在技术上是挑战性的执行,并且难以进行长时间录制从每个制备的针尖记录方法,其测量神经元的响应与电极的那同时提供了一个促味,从此成为首选9,16的方法,它已被用来研究果蝇 8,10,17,18的味觉系统,以及其他一些昆虫种类19-23,它有由tastePROBE放大器的发展,这克服了针尖记录方法的主要缺点之一通过补偿得到了极大的便利参比电极和对昆虫感器之间的大的电势差,使得没有过多的放大或过滤24要被记录的GRN动作电位。另一个重要发展是采用tricholine柠檬酸作为记录电解质25。台泥抑制反应的渗透压敏感GRN和不刺激盐敏感GRN,使得由苦和糖味质生成的反应更容易进行分析25。

在这里,我们描述了如何在目前卡尔森实验室进行的果蝇 labellar感受器尖记录。该协议将解释如何建立一个合适的电钻机,如何准备飞,以及如何执行味道录音。我们也当使用这种出示由果蝇感器的子集,以及一些常见的问题和可能遇到的潜在解决方案的记录得出了一些有代表性的数据技术。

Protocol

以下协议符合美国耶鲁大学的所有动物护理指引。 1。试剂和设备的准备录音设备设置( 图1A)。 选择是无大的变化温度或湿度,并从分离的电气和机械噪声,如冰箱和离心机的来源一个房间钻机安装。 <str…

Representative Results

图5A示出了一个L形感器的一种糖,蔗糖的反应。同一感器不给苦化合物反应,黄连, 图5B示出了一个I型感器,它包含一个苦响应神经元,显示响应于小檗碱较大的幅度峰值,并响应于蔗糖较小的幅度峰值。 L感器显示一个最小的背景响应溶剂对照,台泥,而我感器显示给TCC几乎没有响应( 图5)。有关labellar GRNS的盐和水反应的更多信息,请参阅广井10。</…

Discussion

Labellar感受器由于形态和解剖组织的差异而有所不同在便于记录。有时候感器不响应任何促味剂,连一个已知可引起积极的回应。取决于感器类型与发生这种情况的频率而变化。 L感器是最一致响应和相对容易访问,因为它们的长度。一般来说,S感器是一致响应,但他们的短长并在唇瓣位置好好接触挑战性。余感器可以更容易地访问,这取决于制剂的角度,但是,它们更频繁响应。在任何给定的?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项工作是由一个NRSA博士前补助1F31DC012985(到RD)和美国国立卫生研究院资助,以支持JC

我们要感谢琳内亚魏斯博士的帮助编制数字上的稿子,约瑟夫·莱恩博士有益的意见和弗雷德里克博士马里昂轮询的有益的技术咨询。我们也想感谢的四审稿意见非常有用。

Materials

Stereo Zoom Microscope Olympus  SZX12 DFPLFL1.6x PF eyepieces: WHN10x-H/22 capable of ~150x magnification with long working distance table mount stand
Anti-vibration Table Kinetic Systems BenchMate2210
Micromanipulators Narishige NMN-21
Magnetic stands ENCO Model #625-0930
Reference Electrode Holder Harvard Apparatus ESP/W-F10N Can be mounted on 5ml serological pipette for extended range
 Silver Wire World Precision Instruments AGW1510 0.3-0.5mm diameter
Retort Stand generic
Outlet Plastic Tube generic, 1cm diameter
Flexible Plastic Tubing Nalgene  8000-0060 VI grade 1/4 in internal diameter 
500 ml Conical Flask generic,  with side arm
Aquarium Pump Aquatic Gardens Airpump 2000
Fiber Optic Light Source Dolan-Jenner Industries Fiber-Lite 2100
White Card/Paper Whatman 1001-110
Digital Acquisition System Syntech IDAC-4 Alternative: National Instruments NI-6251  
Headstage Syntech DTP-1 Tasteprobe
Tasteprobe Amplifier Syntech DTP-1 Tasteprobe
Alligator Clips Grainger 1XWN7 Any brand is fine
Insulated Electrical Wire Generic
Gold Connector Pins World Precision Instruments 5482
Personal Computer Dell  Vostro Check for compatibility with digital acquisition system and software
Acquisition Software Syntech Autospike Autospike works with IDAC-4; alternatively, use Labview with NI-6251
Aluminum Foil and/or Faraday Cage Electro-magnetic noise shielding
Borosilicate Glass Capillaries World Precision Instruments 1B100F-4
Pipette Puller Sutter Instrument Company Model P-87 Flaming/Brown Micropipette Puller
Beadle and Ephrussi Ringer Solution See recipe in protocol section
Tricholine citrate, 65%  Sigma T0252-100G
Stereo Microscope Olympus VMZ 1x-4x Capable of 10x-40x magnification
Ice Bucket Generic
p200 Pipette Tips Generic
Spinal Needle Terumo SN*2590
1ml Syringe Beckton-Dickenson 301025
Fly Aspirator Assembled from P1000 pipette tips, flexible plastic tubing, and mesh
Modeling Clay Generic
Forceps Fine Science Tools By Dumont 11252-00 #5SF (super-fine tips)
10ml Syringe  Beckton-Dickinson 301029
Plastic Tubing Tygon R-3603

Referenzen

  1. Glendinning, J. I., Jerud, A., Reinherz, A. T. The hungry caterpillar: an analysis of how carbohydrates stimulate feeding in Manduca sexta. The Journal of experimental biology. 210, 3054-3067 (2007).
  2. Yarmolinsky, D. A., Zuker, C. S., Ryba, N. J. Common sense about taste: from mammals to insects. Cell. 139, 234-244 (2009).
  3. Thistle, R., Cameron, P., Ghorayshi, A., Dennison, L., Scott, K. Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship. Cell. 149, 1140-1151 (2012).
  4. Toda, H., Zhao, X., Dickson, B. J. The Drosophila female aphrodisiac pheromone activates ppk23(+) sensory neurons to elicit male courtship behavior. Cell reports. 1, 599-607 (2012).
  5. Lu, B., LaMora, A., Sun, Y., Welsh, M. J., Ben-Shahar, Y. ppk23-Dependent chemosensory functions contribute to courtship behavior in Drosophila melanogaster. PLoS Genet. 8, e1002587 (2012).
  6. Stocker, R. F. The organization of the chemosensory system in Drosophila melanogaster: a review. Cell and tissue research. 275, 3-26 (1994).
  7. Hiroi, M., Marion-Poll, F., Tanimura, T. Differentiated response to sugars among labellar chemosensilla in Drosophila. Zoological Science. 19, 1009-1018 (2002).
  8. Weiss, L. A., Dahanukar, A., Kwon, J. Y., Banerjee, D., Carlson, J. R. The Molecular and Cellular Basis of Bitter Taste in Drosophila. Neuron. 69, 258-272 (2011).
  9. Falk, R., Bleiser-Avivi, N., Atidia, J. Labellar taste organs of Drosophila melanogaster. Journal of Morphology. 150, 327-341 (1976).
  10. Hiroi, M., Meunier, N., Marion-Poll, F., Tanimura, T. Two antagonistic gustatory receptor neurons responding to sweet-salty and bitter taste in Drosophila. Journal of neurobiology. 61, 333-342 (2004).
  11. Clyne, P. J., Warr, C. G., Carlson, J. R. Candidate taste receptors in Drosophila. Science (New York, N.Y.). 287, 1830-1834 (2000).
  12. Cameron, P., Hiroi, M., Ngai, J., Scott, K. The molecular basis for water taste in Drosophila. Nature. 465, 91-95 (2010).
  13. Croset, V., et al. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet. 6, e1001064 (2010).
  14. Brand, A. H., Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development (Cambridge, England). 118, 401-415 (1993).
  15. Parks, A. L., et al. Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nature genetics. 36, 288-292 (2004).
  16. Hodgson, E. S., Lettvin, J. Y., Roeder, K. D. Physiology of a primary chemoreceptor unit. Science (New York, N.Y.). 122, 417-418 (1955).
  17. Dahanukar, A., Lei, Y. T., Kwon, J. Y., Carlson, J. R. Two Gr genes underlie sugar reception in Drosophila. Neuron. 56, 503-516 (2007).
  18. Lee, Y., Kim, S. H., Montell, C. Avoiding DEET through insect gustatory receptors. Neuron. 67, 555-561 (2010).
  19. Descoins, C., Marion-Poll, F. Electrophysiological responses of gustatory sensilla of Mamestra brassicae (Lepidoptera, Noctuidae) larvae to three ecdysteroids: ecdysone, 20-hydroxyecdysone and ponasterone. A. J Insect Physiol. 45, 871-876 (1999).
  20. Glendinning, J. I., Davis, A., Ramaswamy, S. Contribution of different taste cells and signaling pathways to the discrimination of “bitter” taste stimuli by an insect. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22, 7281-7287 (2002).
  21. Sanford, J. L., Shields, V. D., Dickens, J. C. Gustatory receptor neuron responds to DEET and other insect repellents in the yellow-fever mosquito, Aedes aegypti. Die Naturwissenschaften. 100, 269-273 (2013).
  22. Merivee, E., Must, A., Milius, M., Luik, A. Electrophysiological identification of the sugar cell in antennal taste sensilla of the predatory ground beetle Pterostichus aethiops. J Insect Physiol. 53, 377-384 (2007).
  23. Popescu, A., et al. Function and central projections of gustatory receptor neurons on the antenna of the noctuid moth Spodoptera littoralis. Journal of comparative physiology. A, Neuroethology. 199, 403-416 (2013).
  24. Marion-Poll, F., Der Pers, J. V. a. n. Un-filtered recordings from insect taste sensilla. Entomologia Experimentalis et Applicata. 80, 113-115 (1996).
  25. Wieczorek, H., Wolff, G. The labellar sugar receptor of Drosophila. J. Comp. Physiol. A. Neuroethol Sens. Neural Behav. Physiol. 164, 825-834 (1989).
  26. Morita, H. Initiation of spike potentials in contact chemosensory hairs of insects. III. D.C. stimulation and generator potential of labellar chemoreceptor of calliphora. Journal of cellular and comparative physiology. 54, 189-204 (1959).
  27. Lacaille, F., et al. An inhibitory sex pheromone tastes bitter for Drosophila males. PLoS One. 2, e661 (2007).
  28. Benton, R., Dahanukar, A. Electrophysiological recording from Drosophila taste sensilla. Cold Spring Harbor protocols. 2011, 839-850 (2011).
  29. Pellegrino, M., Nakagawa, T., Vosshall, L. B. Single sensillum recordings in the insects Drosophila melanogaster and Anopheles gambiae. J. Vis. Exp. , e1725 (2010).
  30. Axon Instruments. . The Axon Guide for Electrophysiology & Biophysics Laboratory Techniques. , (1993).
  31. Fujishiro, N., Kijima, H., Morita, H. Impulse frequency and action potential amplitude in labellar chemosensory neurones of Drosophila melanogaster. Journal of insect physiology. 30, 317-325 (1984).
  32. Marion-Poll, F., Tobin, T. R. Software filter for detecting spikes superimposed on a fluctuating baseline. Journal of neuroscience. 37, 1-6 (1991).
  33. Meunier, N., Marion-Poll, F., Lansky, P., Rospars, J. P. Estimation of the individual firing frequencies of two neurons recorded with a single electrode. Chem Senses. 28, 671-679 (2003).
  34. Meunier, N., Marion-Poll, F., Rospars, J. P., Tanimura, T. Peripheral coding of bitter taste in Drosophila. Journal of neurobiology. 56, 139-152 (2003).
check_url/de/51355?article_type=t

Play Video

Diesen Artikel zitieren
Delventhal, R., Kiely, A., Carlson, J. R. Electrophysiological Recording From Drosophila Labellar Taste Sensilla. J. Vis. Exp. (84), e51355, doi:10.3791/51355 (2014).

View Video