Summary

利用RNA干扰调查的先天免疫反应的小鼠巨噬细胞

Published: November 03, 2014
doi:

Summary

In this protocol, we describe methods to efficiently transfect murine macrophage cell lines with siRNAs using the Amaxa Nucleofector 96-well Shuttle System, stimulate the macrophages with lipopolysaccharide, and monitor the effects on inflammatory cytokine production.

Abstract

Macrophages are key phagocytic innate immune cells. When macrophages encounter a pathogen, they produce antimicrobial proteins and compounds to kill the pathogen, produce various cytokines and chemokines to recruit and stimulate other immune cells, and present antigens to stimulate the adaptive immune response. Thus, being able to efficiently manipulate macrophages with techniques such as RNA-interference (RNAi) is critical to our ability to investigate this important innate immune cell. However, macrophages can be technically challenging to transfect and can exhibit inefficient RNAi-induced gene knockdown. In this protocol, we describe methods to efficiently transfect two mouse macrophage cell lines (RAW264.7 and J774A.1) with siRNA using the Amaxa Nucleofector 96-well Shuttle System and describe procedures to maximize the effect of siRNA on gene knockdown. Moreover, the described methods are adapted to work in 96-well format, allowing for medium and high-throughput studies. To demonstrate the utility of this approach, we describe experiments that utilize RNAi to inhibit genes that regulate lipopolysaccharide (LPS)-induced cytokine production.

Introduction

在这个协议中,我们描述了有效的方法,以抑制使用的siRNA的基因在小鼠巨噬细胞系和监视这些处理上的先天免疫反应的影响。这些程序在96孔格式进行,允许RNAi筛选在中等或高通量的方式。

在对感染的反应,人类装入立即先天免疫反应和较慢的但更具体的适应性免疫反应。这种快速先天免疫反应涉及吞噬先天免疫细胞,包括巨噬细胞1的募集和活化。经典的活化巨噬细胞参与了急性炎症反应,产生抗微生物蛋白和化合物,细胞因子和趋化因子,并呈递抗原2,3。另外活化的巨噬细胞在调节机体免疫力,保持宽容,组织修复的作用,并且伤口愈合4-8。由于他们的职能范围广泛的巨噬细胞可起到多种疾病,包括动脉粥样硬化,关节炎,癌症和9的作用。因此,巨噬细胞的研究一直是研究的重要领域中的各种疾病领域的一段时间。

尽管其在先天免疫应答的重要性,巨噬细胞可以是具有挑战性的细胞来工作。特别是,它难以得到利用巨噬细胞中的脂质试剂有效转染无关联的毒性10,11。此外,即使当的siRNA被有效地传递到巨噬细胞中RNAi诱导的基因经常拦截的鲁棒性可以相当温和,可以从基因而异基因。

为了克服这些技术挑战,我们有两种小鼠巨噬细胞系RAW264.7 1718 J774A.1优化转染和技术击倒12-16。此方法使用Amaxa公司Nucleofector 96孔班车系统转染;该系统使用专门的试剂和电穿孔的组合转染细胞在96孔格式19。转染后,我们描述的方法来最大化细胞恢复和生存能力,并最大限度地随后的siRNA诱导的基因敲除。为了说明这种方法的实用性,我们描述了一种协议,用于siRNA递送到这些巨噬细胞系,刺激这些细胞用脂多糖(LPS),并监视在生产几种促炎性细胞因子的水平的先天免疫应答。我们提供一种其中我们针对Toll样受体(TLR)家族,其成员感测LPS和其他相关的病原体分子模式(PAMP),以调节先天免疫的样本数据。

Protocol

1.维持巨噬细胞系成长的RAW264.7并在DMEM J774A.1细胞系在5%CO 2的存在下在补充有10%胎牛血清(FBS)中,在37ºC。为了帮助保持无菌,加1%青霉素/链霉素(青霉素/链霉素)的培养基(尽管这不是严格必需的)。 关键的步骤:确保巨噬细胞生长在一个健康的状态,实现高效转染和siRNA诱导的基因敲除。利用通道3和10之间的单元格后新鲜解冻,这些巨噬细胞系具有?…

Representative Results

为了证明使用这种方法转染的效率,我们使用流式细胞仪( 图1)监视的FITC标记的siRNA的摄取。 为了说明我们的用于监视先天免疫应答的方法的实用性,我们转染的靶向已知的先天性免疫调节基因插入的RAW264.7巨噬细胞系的siRNA,刺激了细胞用LPS,然后监测生产的促炎性细胞因子的IL- 6和TNFα。不同的TLR识别不同的PAMP,与从由TLR4 20识别革兰氏阴性细菌的脂?…

Discussion

众多研究已经发表,其中各个基因已在小鼠巨噬细胞被设为目标的siRNA。而脂质介导的转染已用于siRNA递送给个体基础上的巨噬细胞的细胞系,这些方法存在的生存能力,有限的基因敲除,以及变异性的潜在影响,从基因到基因。为了开发更强有力的测定法,可以用于靶向基因在中等或高通量的方式,我们的优化使用Amaxa公司nucleofector 96-穿梭系统,它显示出在基因敲除更多的一致性和生存能力有限…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

Thanks to Brad Lackford for assistance optimizing some of the techniques described in this manuscript.

Materials

Amaxa nucleofector 96-well shuttle system Lonza AAM-1001S
Amaxa SF cell line 96-well nucleofector kit Lonza V4SC-2096
RAW264.7 mouse macrophage cell line ATCC TIB-71
J774A.1 mouse macrophage cell line ATCC TIB-67
siGenome smartpool siRNA Dharmacon varies depending on gene
Non-targeting control siRNA pool Dharmacon D-001206-13-20
Block-iT fluorescent oligo for electrooration Invitrogen 13750062
Ultrapure E. coli O111:B4 LPS List Biological Laboratories 421
DMEM, high glucose Invitrogen 11995-065
RPM1-1640 Invitrogen 11875-093
Penicillin-Streptomycin Solution (Pen/Strep) Fisher SV30010
0.25% Trypsin-EDTA Invitrogen 25200072
96 well tissue culture plates Fisher 07-200-89
96 well round bottom sterile plates (not coated) Fisher 07-200-745
Mouse IL-6 Duoset ELISA kit R&D Biosystems DY406
Mouse TNFa Duoset ELISA kit R&D Biosystems DY410
Fluorescein diacetate Sigma-Aldrich F7378
RLT Bufer Qiagen 79216
Rneasy mini kit Qiagen 74134
Vybrant Phagocytosis Assay Kit Invitrogen V-6694

Referenzen

  1. Kaufmann, S. H. E., Medzhitov, R., Gordon, S. . The innate immune response to infection. , (2004).
  2. Adams, D. O., Hamilton, T. A. The cell biology of macrophage activation. Annual review of immunology. 2, 283-318 (1984).
  3. Fujiwara, N., Kobayashi, K. Macrophages in inflammation. Current drug targets. Inflammation and allergy. 4, 281-286 (2005).
  4. Gordon, S., Martinez, F. O. Alternative activation of macrophages: mechanism and functions. Immunity. 32, 593-604 (2010).
  5. Martinez, F. O., Helming, L., Gordon, S. Alternative activation of macrophages: an immunologic functional perspective. Annual review of immunology. 27, 451-483 (2009).
  6. Fairweather, D., Cihakova, D. Alternatively activated macrophages in infection and autoimmunity. Journal of autoimmunity. 33, 222-230 (2009).
  7. Benoit, M., Desnues, B., Mege, J. L. Macrophage polarization in bacterial infections. Journal of immunology. 181, 3733-3739 (2008).
  8. Mantovani, A., Sica, A., Locati, M. Macrophage polarization comes of age. Immunity. 23, 344-346 (2005).
  9. Burke, B., Lewis, C. E. . The macrophage. , (2002).
  10. Lee, G., Santat, L. A., Chang, M. S., Choi, S. RNAi methodologies for the functional study of signaling molecules. PloS one. 4, (2009).
  11. Carralot, J. P., et al. Automated high-throughput siRNA transfection in raw 264.7 macrophages: a case study for optimization procedure. Journal of biomolecular screening. 14, 151-160 (2009).
  12. Alper, S., et al. Identification of innate immunity genes and pathways using a comparative genomics approach. ProcNatl Acad Sci USA. 105, 7016-7021 (2008).
  13. De Arras, L., et al. An evolutionarily conserved innate immunity protein interaction network. J. Bio. Chem. , 1967-1978 (2013).
  14. Yang, I. V., et al. Novel regulators of the systemic response to lipopolysaccharide. Am J Respir Cell Mol Biol. 45, 393-402 (2011).
  15. Yang, I. V., et al. Identification of novel innate immune genes by transcriptional profiling of macrophages stimulated with TLR ligands. Molecular immunology. 48, 1886-1895 (2011).
  16. Yang, I. V., et al. Identification of novel genes that mediate innate immunity using inbred mice. Genetik. 183, 1535-1544 (2009).
  17. Raschke, W. C., Baird, S., Ralph, P., Nakoinz, I. Functional macrophage cell lines transformed by Abelson leukemia virus. Cell. 15, 261-267 (1978).
  18. Ralph, P., Moore, M. A., Nilsson, K. Lysozyme synthesis by established human and murine histiocytic lymphoma cell lines. The Journal of experimental medicine. , 1528-1533 (1976).
  19. Zumbansen, M., et al. First siRNA library screening in hard-to-transfect HUVEC cells. Journal of RNAi and gene silencing. 6, 354-360 (2010).
  20. Lu, Y. C., Yeh, W. C., Ohashi, P. S. LPS/TLR4 signal transduction pathway. Cytokine. 42, 145-151 (2008).
  21. Aliprantis, A. O., et al. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science. 285, 736-739 (1999).
  22. Alexopoulou, L., Holt, A. C., Medzhitov, R., Flavell, R. A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 413, 732 (2001).
  23. Conforti, R., et al. Opposing effects of toll-like receptor (TLR3) signaling in tumors can be therapeutically uncoupled to optimize the anticancer efficacy of TLR3 ligands. Cancer Res. 70, 490-500 (2010).
  24. Fernandez-Botran, R., Větvička, V. . Methods in Cellular Immunology. 8, 8 (2001).

Play Video

Diesen Artikel zitieren
De Arras, L., Guthrie, B. S., Alper, S. Using RNA-interference to Investigate the Innate Immune Response in Mouse Macrophages. J. Vis. Exp. (93), e51306, doi:10.3791/51306 (2014).

View Video