Peptídeo amidas terciárias (PTA) são uma super família de peptidomiméticos que incluem mas não estão limitados a péptidos, peptóides e peptídeos N-metilados. Aqui nós descrevemos um método sintético que combina split-and-piscina e estratégias sub-monômero para sintetizar um talão biblioteca de um composto de PTAs.
Peptidomimetics são excelentes fontes de proteínas ligantes. A natureza oligomérica destes compostos nos permite aceder a grandes bibliotecas sintéticos em fase sólida, utilizando química combinatória. Uma das classes mais bem estudados da peptidomimetics é peptoids. Peptóides são fáceis de sintetizar e têm mostrado ser resistentes à proteólise e célula-permeável. Ao longo da última década, muitos ligantes protéicos úteis foram identificados através de pesquisa de bibliotecas peptoid. No entanto, a maioria dos ligantes identificados a partir de bibliotecas peptoid não exibem uma elevada afinidade, com raras excepções. Isto pode ser devido, em parte, à falta de centros quirais e restrições conformacionais em moléculas peptoid. Recentemente, descrevemos uma nova rota sintética para acessar peptídeo amidas terciárias (PTAs). APCs são uma super família de peptidomiméticos que incluem mas não estão limitados a peptídeos, peptóides e peptídeos N-metilados. Com cadeias laterais em ambos α-carbono e principais átomos de nitrogênio da cadeia,a conformação, estas moléculas são grandemente limitado por impedimento estérico e alílico 1,3 estirpe. (Figura 1) O nosso estudo sugere que estas moléculas PTA são altamente estruturado em solução e pode ser utilizada para identificar ligandos de proteína. Acreditamos que estas moléculas podem ser uma fonte de futuro ligandos proteicos de alta afinidade. Aqui nós descrevemos o método sintético que combina o poder de ambos split-and-piscina e estratégias sub-monômero para sintetizar uma amostra de um talão de um composto (OBOC) biblioteca de PTAs.
Os peptidomiméticos são compostos que imitam a estrutura dos péptidos naturais. Eles são concebidos para reter a bioactividade ao superar alguns dos problemas associados com os péptidos naturais, incluindo a permeabilidade celular e a estabilidade contra a proteólise 1-3. Devido à natureza oligomérica destes compostos, grandes bibliotecas sintéticas pode ser facilmente acedido através de vias sintéticas monoméricas ou sub-monoméricos 4-7. Uma das classes mais estudados da peptidomimetics é peptoids. Peptóides são oligómeros de glicinas N-alquilados que podem ser facilmente sintetizados utilizando uma estratégia de sub-monómero de 8, 9. Muitos ligantes de proteínas úteis foram identificados com sucesso desde a triagem de grandes bibliotecas peptoid sintética contra alvos da proteína 1, 10-14. No entanto, os "hits" identificados a partir de bibliotecas peptoid raramente arquivar muito elevada afinidade para proteínas alvo 1,10-14,22. Uma major diferença entre peptóides e péptidos naturais é que a maioria dos peptóides geralmente não têm a capacidade de formar estruturas secundárias devido à falta de centros quirais e restrições conformacionais. Para resolver este problema, várias estratégias foram desenvolvidas ao longo da última década, em grande parte, com foco na modificação de cadeias laterais contidos os principais átomos de nitrogênio da cadeia de 15-22. Recentemente, desenvolvemos uma nova via de síntese para introduzir as cadeias laterais de aminoácidos naturais em uma espinha dorsal peptoid para criar péptidos amidas terciárias 23.
Peptídeo amidas terciárias (PTA) são uma super-família de peptidomiméticos que incluem mas não estão limitados a péptidos (R 2 = H), peptóides (R1 = H) e os péptidos N-metilados (R1 ≠ H, R2 = Me) . (Ver Figura 1) A via sintética emprega aminoácidos de ocorrência natural como fonte de quiralidade e cadeias laterais na45; de carbono, e as aminas primárias disponíveis comercialmente para proporcionar N-substituições. Por conseguinte, um espaço maior do que o químico de péptidos simples, peptóides ou péptidos N-metilados podem ser exploradas. Os espectros de dicroísmo circular demonstraram que as moléculas de PTA são altamente estruturado em solução. Caracterização de um dos complexos de proteína-PTA mostra claramente que os constrangimentos conformacionais de ATP são necessários para a ligação. Recentemente, nós também descobrimos que algumas das moléculas de PTA possuem melhorada a permeabilidade celular do que os seus homólogos peptoid e peptídicas. Acreditamos que essas bibliotecas PTA pode ser uma boa fonte de ligantes de alta afinidade para proteínas alvo. Neste artigo, vamos discutir a síntese de uma amostra de um talão de um composto (OBOC) biblioteca de PTA em detalhes, juntamente com alguns melhores condições para o acoplamento e clivagem destes compostos.
Peptídeo amidas terciárias (PTAs) são uma superfamília de oligômeros peptidomiméticas. Além dos peptídeos bem estudadas, peptoids e peptídeos N-metilados, uma grande parte dos compostos que compõem a família permanece pouco estudado, majoritariamente devido à falta de método sintético para acessar gerais peptídeos N-alquilados. Aqui, descrevemos um método eficiente para sintetizar APCs com os blocos de construção quirais derivados de amino ácidos. Anteriormente, relataram usar uma nova rota sub-monôm…
The authors have nothing to disclose.
Os autores gostariam de agradecer ao Dr. Jumpei Morimoto e Dr. Todd Doran para a assistência valiosa. Este trabalho foi apoiado por um contrato do NHLBI (no1-HV-00242).
2,4,6 trimethylpyridine | ACROS | 161950010 | CAS:108-75-8 |
2-morpholinoethanamine | Sigma-Aldrich | 06680 | CAS:2038-03-1 |
48% HBr Water solution | ALFA AESAR | AA14036AT | CAS:10035-10-6 |
Acetaldehyde | Sigma-Aldrich | 402788 | CAS:75-07-0 |
Acetonitrile | Fisher | SR015AA-19PS | CAS:75-05-8 |
Anhydrous Tetrahydrofuran (THF) | EMD | EM-TX0277-6 | CAS:109-99-9 |
Benzylamine | Sigma-Aldrich | 185701 | CAS:100-46-9 |
bis(trichloromethyl) carbonate (BTC) | ACROS | 258950050 | CAS:32315-10-9 |
Bromoacetic acid | ACROS | 106570010 | CAS:79-08-3 |
Chloranil | Sigma-Aldrich | 23290 | CAS:118-75-2 |
Cyclohexanemethylamine | Sigma-Aldrich | 101842 | CAS:3218-02-8 |
D2O | Cambridge Isotope | DLM-4-99.8-1000 | CAS:7789-20-0 |
D-alanine | Anaspec | 61387-100 | CAS:338-69-2 |
Dichloromethane (DCM) | Fisher | BJ-NS300-20 | CAS:75-09-2 |
Dimethylformamide (DMF) | Fisher | BJ-076-4 | CAS:68-12-2 |
Ethylene glycol | Oakwood | 44710 | CAS:107-21-1 |
Isopentylamine | Sigma-Aldrich | W321907 | CAS:107-85-7 |
KBr | ACROS | 424070025 | CAS:7758-02-3 |
L-alanine | Anaspec | 61385-100 | CAS:56-41-7 |
3-Methoxypropylamine | Sigma-Aldrich | M25007 | CAS:5332-73-0 |
2-Methoxyethylamine | Sigma-Aldrich | 143693 | CAS:109-85-3 |
N-(3-Aminopropyl)-2-pyrrolidinone | Sigma-Aldrich | 136565 | CAS:7663-77-6 |
N,N'-Diisopropylcarbodiimide (DIC) | ACROS | 115211000 | CAS:693-13-0 |
N,N-Diisopropylethylamine (DIPEA) | Sigma-Aldrich | D125806 | CAS:7087-68-5 |
NaNO2 | ACROS | 424340010 | CAS:7631-99-4 |
NAOD 40% solution in water | ACROS | 200058-506 | CAS:7732-18-5 |
Piperidine | ALFA AESAR | A12442-AE | CAS:110-89-4 |
Piperonylamine | Sigma-Aldrich | P49503 | CAS:2620-50-0 |
Propylamine | Sigma-Aldrich | 240958 | CAS:107-10-8 |
Trifluoroacetic acid | Sigma-Aldrich | 299537 | CAS:76-05-1 |
α-Cyano-4-hydroxycinnamic acid | Sigma-Aldrich | 39468 | CAS:28166-41-8 |
α-ketoglutarate | ALFA AESAR | AAA10256-22 | CAS:328-50-7 |
Tentagel Resin with RINK linker | Rapp-Polymere | S30023 | |
Alanine transaminase | Roche | 10105589001 | AKA: Glutamate-Pyruvate Transaminase (GPT) |
Incubator | New Brunswick Scientific | Innova44 | |
NMR | Bruker | 400MHz | |
MALDI mass spectrometer | Applied Biosystems | 4800 MALDI-TOF/TOF | |
Lyophilizer | SP Scientific | VirTis benchtop K | |
Syringe reactor | INTAVIS | Reaction Column | 3ml, 5ml, 10ml, 20ml |
Vacuum manifold | Promega | A7231 | Vac-Man |