Summary

在小鼠导航虚拟现实环境的双光子钙成像

Published: February 20, 2014
doi:

Summary

这里,我们描述在一个虚拟现实环境中的行为过程中涉及的小鼠皮质的双光子成像的实验程序。

Abstract

近年来,双光子成像已经成为神经科学中一个宝贵的工具,因为它允许基因鉴定细胞的行为1-6中的活性慢性测量。这里我们描述了执行双光子成像技术在小鼠皮质,而动物导航虚拟现实环境的方法。我们注重的实验程序,是关键的行为动物成像在明亮的虚拟环境的各个方面。过程中出现的这个实验装置,我们这里的地址是关键的问题:尽量减少大脑运动有关的文物,最大限度地减少从虚拟现实投影系统漏光,并尽量减少激光诱导组织损伤。我们也提供来样软件来控制虚拟现实环境,并做瞳孔跟踪。这些程序和资源应该是可能要转换的常规双光子显微镜使用中表现小鼠。

Introduction

钙指标(基因编码的像GCaMP5 7或R-GECO 8,或合成染料像OGB或Fluo4)双光子成像已经成为测量神经元活动的行为小鼠1-6的有力方法。它使数百个细胞的在接近单个动作电位分辨率活动的同时进行测量,最多约800微米的脑表面9,10所示。此外,使用基因编码的钙指标(GECIS)神经元的活性可测慢性5,11,12,和在遗传背景明确细胞类型13。总之,这些方法提供了一定程度的打开了大量的神经元计算的体内研究中新的可能性,时间和空间分辨率。

手术治疗是必要的揭露和标记的小鼠大脑进行成像。细胞使用的是重组腺相关vir区典型地转我们(AAV)系统GECI送货和颅骨窗被植入在注射部位获得的光纤接入到大脑。甲头杆然后被连接到双光子显微镜下颅骨为头部固定。因为大多数的问题,清醒成像产生于准备不稳定,这些步骤的设计和实施是至关重要的。理想的情况是在这里描述的过程应该允许多达几个月后手术慢性成像。

为了在双光子成像使视觉引导的行为,头部固定鼠标坐在一个支持空气球跑步机,它可以用它来浏览虚拟现实环境。鼠标在跑步机上的运动被连接到运动中所显示周围鼠标14,15的环形屏幕上的虚拟环境。行为变量如运动,视觉刺激,而瞳孔的位置可以记录6。

T“>我们描述参与了小鼠探索虚拟现实环境慢性双光子成像的程序解决的关键点是:减少运动伪影,减少漏光,同时记录细胞数量的最大化,并最小化光损伤,我们还提供有关设置空中支持的跑步机,瞳孔跟踪,以及虚拟现实环境的细节。这里所描述的程序,可以用于成像的头部固定的小鼠荧光标记的细胞群中潜在的各种行为范式。

Protocol

所有动物的程序获得批准,并按照广巴塞尔城市州的兽医部门的指导下进行。 1。硬件和软件设置双光子显微镜的设置: 用脉冲红外激光作为照明源(脉冲宽度<120飞秒)。 使用一个扫描头8或12 kHz的谐振扫描器和一个标准的振镜注组成:这使40或60赫兹的帧频在750×400像素。高帧速率对于减少脑运动诱发的图像失真的关键。此外?…

Representative Results

在标有GECI细胞群的双光子钙成像的图像质量在很大程度上依赖于颅窗口植入物的质量。二周后病毒注射颅窗口应检查清楚。不应该有肉芽组织或骨再生长可见( 图1A)。此外,浅表血管的图案应该保持不变和脉管系统的边界应当清晰明确。在同一时间,GECI表达也可以进行检查。标记细胞勃利应该是清晰可见的落射荧光显微镜( 图1B)下。 理想的情?…

Discussion

的关键行为的双光子成像的成功是制备在两个方面的稳定性:

  1. 以上的天交窗口植入的过程中,组织的炎症反应可以导致增强肉芽组织和软骨会阻碍或什至阻止成像的形成。
  2. 在实验过程中的大脑有足够稳定,以防止运动伪影败坏神经活动相关的荧光信号。

为了保持到最低限度颅窗口植入术中应尽可能快地和直接向脑损伤进行了炎症免疫反应,应不惜一切代…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项工作是由弗里德里希·米歇尔生物医学研究所,马普学会,和人类前沿科学计划的支持。

Materials

cover slips (d = 3-5 mm) Menzel window implant
InSight DeepSee laser Spectra-Physics microscope
12kHz resonance scanner Cambridge Technology G1-003-30026 microscope
Galvometer Cambridge Technology G6215H microscope
Digitizer National Instruments NI 5772 microscope
FPGA National Instruments PXIe 7965R microscope
Acquisition card National Instruments PCIe 6363 microscope
Emission filter 525/50 Semrock FF03-525/50-25 microscope
Piezo-electric z-drive Physikinstrumente P-726.1CD microscope
Controller for piezo-electric drive Physikinstrumente E665 LVPZT microscope
Objective 16x, 0.8NA Nikon CFI75 microscope
Current amplifier Femto DHPCA-100 microscope
Photomultiplier tube Hamamatsu microscope
USB Camera without IR filter ImagingSource DMK22BUC03  pupil tracking
Objective 50 mm ImagingSource M5018-MP  pupil tracking
Macro adapter rings ImagingSource LAexSet pupil tracking
Optical computer mouse Logitech G500 motion tracking
Styrofoam ball 20 cm e.g. idee-shop.de 08797.00.15 virtual environment
LED projector Samsung SP-F10M  virtual environment
Acquisition card National Instruments NI 6009 virtual environment
Panda3D game engine www.panda3d.org virtual environment
Numpy library for Python www.scipy.org virtual environment
Scipy library for Python www.scipy.org virtual environment
NI-DAQmx driver National Instruments www.ni.com virtual environment
Ultrasound gel Dahlhausen 5701.0342.10 imaging

Referenzen

  1. Helmchen, F., Fee, M. S., Tank, D. W., Denk, W. A Miniature Head-Mounted Two-Photon MicroscopeHigh-Resolution Brain Imaging in Freely Moving Animals. Neuron. 31 (6), 903-912 (2001).
  2. Dombeck, D. A., Khabbaz, A. N., Collman, F., Adelman, T. L., Tank, D. W. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron. 56, 43-57 (2007).
  3. Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L., Tank, D. W. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat. Neurosci. 13 (11), 1433-1440 (2010).
  4. Harvey, C. D., Coen, P., Tank, D. W. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature. 484 (7395), 62-68 (2012).
  5. Huber, D., Gutnisky, D. A. Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature. 484 (7395), 473-478 (2012).
  6. Keller, G. B., Bonhoeffer, T., Hübener, M. Sensorimotor mismatch signals in primary visual cortex of the behaving mouse. Neuron. 74 (5), 809-815 (2012).
  7. Akerboom, J., Chen, T. -. W. Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging. J. Neurosci. 32 (40), 13819-13840 (2012).
  8. Zhao, Y., Araki, S. An expanded palette of genetically encoded Ca2+ indicators. Science. 333 (6051), 1888-1891 (2011).
  9. Mittmann, W., Wallace, D. J. Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo. Nat. Neurosci. 14 (8), 1089-1893 (2011).
  10. Katona, G., Szalay, G. Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes. Nat. Methods. 9 (2), 201-208 (2012).
  11. Mank, M., Santos, A. F. A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat. Methods. 5 (9), 805-811 (2008).
  12. Margolis, D. J., Lütcke, H. Reorganization of cortical population activity imaged throughout long-term sensory deprivation. Nat. Neurosci. 15 (11), 1539-1546 (2012).
  13. Zariwala, H. A., Borghuis, B. G. A Cre-dependent GCaMP3 reporter mouse for neuronal imaging in vivo. J. Neurosci. 32 (9), 3131-3141 (2012).
  14. Harvey, C. D., Collman, F., Dombeck, D. A., Tank, D. W. Intracellular dynamics of hippocampal place cells during virtual navigation. Nature. 461 (7266), 941-946 (2009).
  15. Hölscher, C., Schnee, A., Dahmen, H., Setia, L., Mallot, H. A. Rats are able to navigate in virtual environments. J. Exp. Biol. 208, 561-5519 (2005).
  16. Borlinghaus, R. T. MRT letter: high speed scanning has the potential to increase fluorescence yield and to reduce photobleaching). Microsc. Res. Tech. 69 (9), 689-692 (2006).
  17. Reiff, D. F., Plett, J., Mank, M., Griesbeck, O., Borst, A. Virtual Reality for Mice, mousevr.blogspot.com. Nat. Neurosci. 13, 973-978 (2010).
  18. Sakatani, T., Isa, T. Quantitative analysis of spontaneous saccade-like rapid eye movements in C57BL/6 mice. Neurosci. Res. 58, 324-331 (2007).
  19. Golshani, P., Portera-Cailliau, C. In vivo 2-photon calcium imaging in layer 2/3 of mice. J. Vis. Exp. (13), (2008).
  20. Holtmaat, A., Bonhoeffer, T. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat. Protoc. 4 (8), 1128-1144 (2009).
  21. Schmidt-Hieber, C., Häusser, M. Cellular mechanisms of spatial navigation in the medial entorhinal cortex. Nat. Neurosci. 16 (3), 325-331 (2013).

Play Video

Diesen Artikel zitieren
Leinweber, M., Zmarz, P., Buchmann, P., Argast, P., Hübener, M., Bonhoeffer, T., Keller, G. B. Two-photon Calcium Imaging in Mice Navigating a Virtual Reality Environment. J. Vis. Exp. (84), e50885, doi:10.3791/50885 (2014).

View Video