Этот метод предоставляет метод для сбора, нормализации и количественного роста внутриклеточных бактериальных патогенов, которые предварительно выращивают в естественных клеток-хозяев простейших до инфекциями клеток млекопитающих. Этот метод может быть модифицирован, чтобы приспособить широкий спектр клеток-хозяев для грунтования этапе, а также типы клетки-мишени.
Многие внутриклеточные бактериальные патогены использовать пресноводных простейших как естественный резервуар для распространения в окружающей среде. Legionella легионелл, возбудителя легионеллеза пневмонией, получает преимущество над патогенными в пробирке культурных бактерий при первом собирают из простейших клеток до заражения млекопитающих макрофагов. Это говорит о том, что важным фактором вирулентности не может быть надлежащим образом выраженного в пробирке. Мы разработали послушный системы для грунтования L. легионелл через свой естественный хозяин простейших Acanthamoeba castellanii до млекопитающих инфекции клетки. Вклад любого фактора вирулентности могут быть рассмотрены путем сравнения внутриклеточного роста мутантного штамма дикого типа бактерий, простейших после грунтования. GFP-экспрессирующих дикого типа и мутанта L. легионелл штаммы используются для заражения простейшими монослоев в грунт шагом и позволило достичь поздних стадиях внутриклеточного роста. Флуоресцентные бактерий, затем собирают из этих инфицированных клеток и нормированы спектрофотометрии для получения сопоставимого количества бактерий для последующей инфекции в млекопитающих макрофагов. Для количественного определения, живые бактерии контролируются после заражения с помощью флуоресцентной микроскопии, проточной цитометрии, и колонии покрытия. Этот метод выдвигает на первый план и зависит от вклада клетки-хозяина экспрессии генов путем имитации окружающей среды, которые будут встречаться в естественный путь приобретения. Этот подход может быть изменена, чтобы приспособить любую бактерию, которая использует промежуточного хозяина, как средство для получения патогенных преимущество.
Многие патогенные бактерии приспособились обобщенных стратегий для использования клеток-хозяев для выживания и репликации внутриклеточных отсеке. Во многих случаях, патогенетические механизмы аналогичны между простейшими и многоклеточными клеток. Однако, эти два микросреды очень разные и могут привести к дифференциальной экспрессии факторов вирулентности 1-4. Болезнь легионеров бактерия Legionella легионелл является повсеместно, связанных с пресноводной среде по всему миру 5. Важно отметить, что L. легионелл выращивают в простейших клеток до заражения человеческих моноцитов получить патогенных преимущество, предполагая, что глобальные профили экспрессии генов бактерии выхода клетки простейших отличаются, чем в пробирке выращивают 6-8 организма. В природе, пресноводных амеб обеспечивают богатые питательными веществами пределы для быстрого усиления вторжения бактерий. Человека приобретении L. pneumophила наиболее часто связывают с вдыханием загрязненного капель воды, которые содержат бактерии. Вполне вероятно, что эти капли гавани простейших клеточно-ассоциированных бактерий, простейших, где клетки более устойчивы к обычной воды практик 9,10. Инфекция легких альвеолярные макрофаги доходы таким образом, практически идентична внутриклеточной жизненный цикл бактерий в простейших клеток-хозяев 11-13.
Для того чтобы выжить и размножаться в клетках эукариот, L. легионелл использует специализированный тип секреции IVb система называется Dot / ICM, чтобы доставить почти 300 «эффекторные» белков в цитоплазме клетки-хозяина 14-16. Эти эффекторные белки коллективно работать, чтобы разрушить клеточные процессы в целях получения разрешительной репликации отсек для бактерий 17,18. Удаления в любом из 26 генов, которые составляют Dot / ICM транспортера приводит к дефектных штаммов для внутриклеточных мультiplication 19-23. Исторически сложилось, что удаление отдельных эффекторных генов, кодирующих редко в результате ослабленного штамма для внутриклеточного роста. Это явление было приписано несколько гипотез, в том числе избыточных функций и паралогичных копии эффекторов.
Некоторые факторы вирулентности, только выраженная в контексте клетки-хозяина связанного внутриклеточного роста 24. Мы рационализировать, что если тот или иной эффекторных только выражается в контексте инфекции простейших, то вклад эффекторных не может быть по сравнению с штамма дикого типа, когда оба культивировали в пробирке. L. легионелл переходы от репликативной к пропускающий фазе, поскольку это входит стационарная фаза в культуре 25. Фенотип фазы переключения представляет истощение питательных веществ, возникших в ходе внутриклеточного роста и является примером по сборке жгутиков для подвижности 26. Поскольку L. легионелл более инваSIVE и опасной, когда собирают из простейших клеток, мы стремились разработать тест, который более точно представляют патогенные состояния бактерию, когда он встречается множество макрофагов.
С этой целью мы разработали универсальный тест грунтовки простейших, которые могут вместить любой подходящей принимающей как для первого (заливка ячейки) и второй (клетки-мишени) инфекции этапе. Инфекционный процесс является послушным за счет использования бактерий, стабильно экспрессирующих зеленый флуоресцентный белок (GFP). Инфекции модели для простейших Acanthamoeba castellanii следует методология широко используется в области 27. Для грунтования шаг, Л. легионелл штаммы выращиваются в пробирке в стационарной фазы в жидкую среду, чтобы произвести как 'пропускающего »бактерии (рис. 1А). Бактерии следующий использовали для инфицирования монослоев A. castellanii в течение 18 часов для достижения поздней стадии внутриклеточного жизненного цикла. Большие вакуоли содержатния бактерий могут быть визуализированы в этот момент времени с помощью флуоресцентной микроскопии (рис. 1А). Протозойные Затем клетки лизируются и бактерии извлекают из лизатов измеряется выбросов при 512 нм с использованием флуоресценции ридере. Флуоресценции коррелирует с оптической плотности для расчета кратности-оф-инфекции (MOI) для заражения клетки-мишени (рис. 1, * Корреляция кривой). После вторжения (T 0) и 18 ч после вторжения (T 18), клетки-мишени количественно для флуоресценции, представляющих внутриклеточных бактерий. Флуоресценции можно контролировать с помощью микроскопии и проточной цитометрии и жизнеспособных микроорганизмов может быть измерена через колонию покрытия. Грунтовка анализ всегда сопровождается инфекции дикого типа L. легионелл и деформации дефекты Dot / ICM Тип IV секреторной системы (Δ DotA) (рис. 1А). Это важно обеспечивает внутренний контроль за прямое сравнение между дикого типаой любом изогенных мутантные штаммы, используемые в процессе заражения. Включение авирулентным Δ DotA напряжение во время заливки этапа устанавливает порог для наблюдения ослабленный рост фенотипы, связанные с изогенных мутантные штаммы, которые культивируются в лабораторных условиях.
Бактериальная экспрессия гена жестко контролируется посредством сочетания жизнь цикла и ответ на сигналы в окружающей микросреде. Вакуолярной патогенов, таких как L. легионелл ответить на множество клетки-хозяина полученные сигналы, когда разобщенным в фагосомы. В коллективном ?…
The authors have nothing to disclose.
Мы благодарим д-р Крейг Рой и доктор Дарио Zamboni за предоставление шаблона для инфекций, простейших клеток. Мы благодарим доктора Jagdeep Obhrai, доктор Джорджина Парди, доктор Фред Heffron и Тодд Wisner на оборудование и реагенты; доктор Лулу Cambronne для критического обзора рукописи. Проточной цитометрии была выполнена в цитометрии OHSU потока динамические объекта ресурса. Эта работа была частично поддержана грантом из Медицинского научно-исследовательского фонда Орегон и грант NIH R21 AI088275 (EDC).
Reagent | |||
chloramphenicol | Fisher Scientific | BP904-100 | antibiotic |
IPTG | Fisher Scientific | BP1755-10 | |
ACES | Sigma | A9758-1KG | media component |
ATCC medium: 712 PYG | ATCC | growth media for protozoans | |
1X PBS | Fisher Scientific | SH30256FS | phosphate buffered saline |
activated charcoal | Fisher Scientific | C272-212 | media component |
yeast extract | Fisher Scientific | BP1422-500 | media component |
peptone | BD Diagnostics | 211677 | media component |
agar | Fisher Scientific | BP1423-2 | media component |
L-cysteine, 99%+ | Acros organics | 173601000 | media supplement |
Ferric nitrate nonahydrate | Fisher Scientific | I110-100 | media supplement |
Equipment | |||
EVOS fl | AMG | EVOS fl | fluorescence microscope |
Smart Spec Plus | Bio-Rad | 170-2525 | spectrophotometer |
5810 R centrifuge | Eppendorf | 22627023 | bench top centrifuge |
Repeater plus | Eppendorf | 22230201 | repeating pipette |
SpectraMax Gemini EM | Molecular Devices | microplate reader | |
Softmax Pro 5.3 | Molecular Devices | 0200-310 | microplate reader software |
5424 microfuge | Eppendorf | 22620401 | table top microcentrifuge |
Fast-release pipette pump II | Scienceware | 379111010 | pipette aid |
FACS Calibur | BD Bioscience | flow cytometer | |
FlowJo 7.6.1 | FlowJo | license | flow cytometery software |
15 ml tube | BD Falcon | 352096 | polypropylene conical tube |
1.6 ml microfuge tube | Neptune | 3745.X | microcentrifuge tubes |