Summary

斑马鱼幼虫的前脑的电生理记录

Published: January 24, 2013
doi:

Summary

外场电位记录在幼虫斑马鱼的前脑的一个简单的方法来描述。该方法提供了一个强大的<em在体内</em>读出癫痫样活动。这种技术可以使用转基因斑马鱼幼虫携带癫痫相关基因或癫痫发作诱发的惊厥药给药。

Abstract

癫痫会影响近3万人在美国和世界各地多达50万人。定义为发生自发的无端发作,癫痫,可以获取到大脑或基因突变的结果的一种侮辱。在动物模型癫痫发作的努力,主要用于收购侮辱(惊厥药,刺激或脑损伤)和遗传操作(反义击倒,同源重组或转基因)在啮齿类动物。斑马鱼是脊椎动物模型系统1-3,可以提供一个有价值的替代老鼠癫痫研究。斑马鱼被广泛应用于脊椎动物的遗传学研究或发展,对哺乳动物的遗传相似性,表现出高度表达的同系物〜85%的已知的人类单基因遗传性癫痫突变。由于它们的小尺寸(长4-6毫米),斑马鱼幼虫可以保持低的流体体积为100微升,在早期的发展和阿拉进行期间,在多井板。试剂可直接加入到该溶液中,在胚胎发育,简化给药,从而实现快速的在体内筛选试验化合物4。可用于合成寡核苷酸(吗啉代),致突变,锌指核酸酶和转基因方法,以迅速产生基因敲除或突变的斑马鱼5-7。这些属性提供了前所未有的斑马鱼研究的统计动力分析优势的研究啮齿动物的神经系统疾病,如癫痫。 ,因为癫痫研究的“金标准”是描述监测和分析的异常放电起源于一个中央的大脑结构( 癫痫发作),斑马鱼幼虫的大脑活动的方法,有效地记录在这里。该方法是一种适应传统的细胞外记录技术,并允许稳定的长期监测在完整的斑马鱼幼虫的大脑活动。小号充足的记录上所显示的急性发作引起的惊厥药和自发发作在转基因鱼浴应用。

Protocol

1。鸡蛋的生产和收集斑马鱼的饲养标准程序,前面描述的8。简单地说,成年斑马鱼在养殖箱分频器的地方。第二天早上,在房间里的灯都分频器从坦克和鱼类育种允许不受干扰的交配时间约20至60分钟。 从繁殖罐的鸡蛋被收集在过滤器并和用鸡蛋水漂洗。卵,然后转移到陪替氏培养皿用鸡蛋水。用移液管未受精的卵子和碎片被删除。 将培养皿包含收集鸡蛋的培养箱?…

Representative Results

在图1中所示的实施例的电子照相记录的前脑琼脂嵌入的斑马鱼幼虫的癫痫样放电。在这些样本中的大振幅的多穗型脉冲放电引起的惊厥药浴应用,40毫米毛果芸香碱(A; 6 DPF)或1毫米印防己毒素(B; 8 DPF)。在这些记录中,固定,和琼脂嵌入式斑马鱼的连续监测90分钟。鱼这些记录的条件下继续生存24小时。药物添加到泳季介质和通常扩散到琼脂在30至45分钟之内引出在幼虫斑马鱼前脑?…

Discussion

这里介绍的方法使细胞外记录大脑活动的一个非常敏感和快速的分析。这些录音是类似的脑电图(EEG)监测常用的评估存在的异常放电( 癫痫发作)在啮齿类动物模型癫痫11和患者12。细胞外记录可以结合药理的操作,如下所示。也可用于这些类型的记录,以评估潜在的癫痫表型的转基因斑马鱼。确定,在ENU的突变屏幕(见斑马鱼资源中心, <a href="http://zebrafish.org/zirc/home…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

作者想,感谢他们及早建立斑马鱼在实验室的彼得·卡斯特罗和马修Dinday。这项工作是由美国国立卫生EUREKA(#R01NS079214-01)资助。

Materials

Name of the reagent Company Catalogue number Comments (optional)
Agarose low melting Fisher-Scientific BP1360-100 Dissolve in embryo media at 1.2%
Recording media Fisher-Scientific BP3581, P330-3, BP410-1, BP214-500, D16-1, C77-500 1 mM NaCl, 2.9 mM KCl, 10 mM HEPES, 1.2 mM MgCl2, 10 mM Dextrose, 2.1 mM CaCl2
pH to approximately 7.3 with 1 N NaOH
Tricaine Argent Labs MS-222 0.02%
α-bungarotoxin Tocris Bioscience 2133 1 mg/ml
Capillary glass tubing Warner Instruments G120TF-3 Pull to a resistance of 2 -7 MΩ
Patch clamp amplifier Warner Instruments PC-505B We use a Warner amplifier in current-clamp mode; Gain set at 2 mV/pA and Bessel filter set at 2K. Comparable models can be used according to manufacturer’s instructions.
Filter/amplifier Cygnus Technology FLA-01 We use a Cygnus pre-amplifier; Gain set at 10-20; Cut-off frequency set at 1-2K; Notch filter IN. Comparable models can be used according to manufacturer’s instructions.
Axon A/D board and Axoscope software Molecular Devices Axon Digidata 1320A; Axoscope 8.2 Data is collected in Axoscope using gap-free acquisition mode; sampling at 10 kHz. Comparable models and programs can be used according to manufacturer’s instructions.
Egg water Instant Ocean   3 g Instant Ocean sea salt, 2 ml 0.1% methylene blue in 10 ml deionized water

Referenzen

  1. Clark, K. J., et al. Stressing zebrafish for behavioral genetics. Reviews in Neuroscience. 22 (1), 49 (2011).
  2. Rinkwitz, S., et al. Zebrafish: an integrative system for neurogenomics and neurosciences. Progress in Neurobiology. 93 (2), 231 (2011).
  3. Penberthy, W. T., et al. The zebrafish as a model for human disease. Frontiers in Bioscience. 7, d1439 (2002).
  4. Letamendia, A., et al. Development and validation of an automated high-throughput system for zebrafish in vivo screenings. PLoS One. 7, e36690 (2012).
  5. Nasevicius, A., Ekker, S. C. Effective targeted gene ‘knockdown’ in zebrafish. Nature Genetics. 26 (2), 216 (2000).
  6. Haffter, P., et al. Mutations affecting development of the zebrafish inner ear and lateral line. Development. 123, 1 (1996).
  7. Suster, M. L., et al. Transgenesis in zebrafish with the tol2 transposon system. Methods Molecular Biology. 561, 41 (2009).
  8. Rosen, J. N., Sweeney, M. F., Mably, J. D. Microinjection of Zebrafish Embryos to Analyze Gene Function. J. Vis. Exp. (25), e1115 (2009).
  9. Baraban, S. C., et al. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neurowissenschaften. 131 (3), 759 (2005).
  10. Baraban, S. C., et al. A large-scale mutagenesis screen to identify seizure-resistant zebrafish. Epilepsia. 48 (6), 1151 (2007).
  11. Williams, P., et al. The use of radiotelemetry to evaluate electrographic seizures in rats with kainate-induced epilepsy. Journal of Neuroscience Methods. 155 (1), 39 (2006).
  12. Marsh, E. D., et al. Interictal EEG spikes identify the region of electrographic seizure onset in some, but not all, pediatric epilepsy patients. Epilepsia. 51 (4), 592 (2010).
  13. Zhu, C., et al. Evaluation and application of modularly assembled zinc-finger nucleases in zebrafish. Development. 138 (20), 4555 (2011).
check_url/de/50104?article_type=t

Play Video

Diesen Artikel zitieren
Baraban, S. C. Forebrain Electrophysiological Recording in Larval Zebrafish. J. Vis. Exp. (71), e50104, doi:10.3791/50104 (2013).

View Video