We describe a protocol for real-time videoimaging of neuronal migration in the mouse forebrain. The migration of virally-labeled or grafted neuronal precursors was recorded in acute live slices using wide-field fluorescent imaging with a relatively rapid acquisition interval to study the different phases of cell migration, including the durations of the stationary and migration phases and the speed of migration.
There is a substantial body of evidence indicating that new functional neurons are constitutively generated from an endogenous pool of neural stem cells in restricted areas of the adult mammalian brain. Newborn neuroblasts from the subventricular zone (SVZ) migrate along the rostral migratory stream (RMS) to their final destination in the olfactory bulb (OB)1. In the RMS, neuroblasts migrate tangentially in chains ensheathed by astrocytic processes2,3 using blood vessels as a structural support and a source of molecular factors required for migration4,5. In the OB, neuroblasts detach from the chains and migrate radially into the different bulbar layers where they differentiate into interneurons and integrate into the existing network1, 6.
In this manuscript we describe the procedure for monitoring cell migration in acute slices of the rodent brain. The use of acute slices allows the assessment of cell migration in the microenvironment that closely resembling to in vivo conditions and in brain regions that are difficult to access for in vivo imaging. In addition, it avoids long culturing condition as in the case of organotypic and cell cultures that may eventually alter the migration properties of the cells. Neuronal precursors in acute slices can be visualized using DIC optics or fluorescent proteins. Viral labeling of neuronal precursors in the SVZ, grafting neuroblasts from reporter mice into the SVZ of wild-type mice, and using transgenic mice that express fluorescent protein in neuroblasts are all suitable methods for visualizing neuroblasts and following their migration. The later method, however, does not allow individual cells to be tracked for long periods of time because of the high density of labeled cells. We used a wide-field fluorescent upright microscope equipped with a CCD camera to achieve a relatively rapid acquisition interval (one image every 15 or 30 sec) to reliably identify the stationary and migratory phases. A precise identification of the duration of the stationary and migratory phases is crucial for the unambiguous interpretation of results. We also performed multiple z-step acquisitions to monitor neuroblasts migration in 3D. Wide-field fluorescent imaging has been used extensively to visualize neuronal migration7-10. Here, we describe detailed protocol for labeling neuroblasts, performing real-time video-imaging of neuroblast migration in acute slices of the adult mouse forebrain, and analyzing cell migration. While the described protocol exemplified the migration of neuroblasts in the adult RMS, it can also be used to follow cell migration in embryonic and early postnatal brains.
1. Labeling Neuronal Precursors
Neuroblasts can be visualized using transgenic mice that selectively express fluorescent proteins in neuroblasts (i.e., Dcx-GFP, Gad67-GFP), by stereotaxically injecting viral particles encoding fluorescent proteins into the SVZ or RMS, or by grafting neuronal precursors from reporter mice (i.e., Dcx-GFP, Gad67-GFP) into the SVZ of wild-type mice. We describe the procedure for grafting and viral labeling of neuronal precursors.
Dissociation of neuroblasts from the SVZ of reporter mice
40X solution
10 ml Pen/Strept (Stock Pen 10,000 u/ml/Strept 1,000 ug/ml)
10 ml Glucose (Stock 200 mg/ml)
20 ml Sodium Pyruvate (Stock 100 mM)
10 ml H2O
Prepare 1 ml aliquots
Dissection solution (100 ml)
HBSS 1X – 97.4 ml
HEPES (1 M) – 0.1 ml
40X solution – 2.5 ml
DNase solution (20K units/ml)
DNaseI, typeIV from bovine pancreas
150,000 units dissolve in 7.5 ml H2O
Filtered 0.22 μm
Prepare 1 ml aliquots
Trypsin- DNaseI solution (10 ml)
HBSS – 8.6 ml
DNaseI (20K units/ml) – 0.15 ml
Trypsin-EDTA(0.5%) – 1 ml
40X solution – 0.25 ml
Trituration solution (50 ml)
Neurobasal medium – 47.5 ml
BSA (300 mg/ml) – 332.5 μl
40X solution – 1.25 ml
DNaseI (20K units/ml) – 0.66 ml
Graft the desired number of cells into the SVZ using the procedure described below.
Stereotaxic injection of the virus and grafting of dissociated cells
2. Preparing Acute Slices
This procedure should be performed as quickly as possible to ensure the best quality slices.
3. Time-lapse Imaging of Neuroblast Migration
The imaging of migrating neuroblasts should be performed within 6-8 hr of the preparation of slices and 3-10 days after neuroblasts labeling. To avoid changes in migration parameters because of stereotaxic injection that might induce brain damage and glial activation use thin-tipped glass microelectrodes (1-2 μm) to minimize the brain damage, and perform the imaging in the regions distal from the site of injection (i.e. image in the RMS following injection into the SVZ or in the RMS of olfactory bulb following injection into the RMS). Although the imaging can be performed up to 21 days after injection of lentiviral particles into the SVZ, we recommend shorter post-injection interval (3-10 days) since it allows visualizing and tracking more cells per field of view.
We used a wide-field fluorescent motorized BX61WI microscope (Olympus) equipped with a CCD camera (CoolSnapHQ2, Photometrics) and a 40X water immersion objective with a 0.8 numerical aperture (Olympus). The objectives with higher NA will provide better resolution images. Labeled neuroblasts (grafted either from a reporter donor mouse or virally labeled) were excited with a Lambda DG-4 equipped with a 175 W xenon lamp (Sutter Instruments) for 30-100 msec per z acquisition. Multi-wavelength imaging can be also performed using appropriate filter sets (Chroma) to track neuronal migration along the other cellular elements of the RMS, such as fluorescently labeled astrocytes or blood vessels. The microscope, CCD camera and DG-4 were controlled by MetaMorph software (Molecular Device) that allowed the different parameters of time-lapse acquisition program to be set (see below). The slices were transferred to a PH1 Series 20 ultra-quiet imaging chamber (Harvard Apparatus) built on the microscope. The chamber was connected to an automatic heating system (TC-344B, Harvard Apparatus) and was continuously perfused with oxygenated ACSF (Figure 1D). The temperature in the chamber was maintained at 31-33 °C, and the flow rate of the ACSF was 1-2 ml per min.
4. Analyzing Neuroblast Migration
We use Imaris software (Bitplane) to analyze the data. This allows us to automatically track newborn cell migration in 3D. The Imaris 7.0F1 package includes the MeasurementsPro, Imaris Tracking, ImarisColoc, ImarisXT, Filament Tracer, and InPress modules.
5. Representative Results
We tested and optimized wide-field time-lapse imaging of neuroblast migration. Viral labeling or grafting of fluorescently labeled neuroblasts into the SVZ allowed for robust GFP expression in migrating cells (Figure 2). Multi-wavelength imaging can be applied to visualize neuroblast migration along other cellular elements of the RMS such as dextran TexasRed-filled blood vessels4 (Figure 3 and Movie 1), astrocytes fluorescently labeled by stereotaxic injection of viruses with a glial cell specific promoter (Figure 2B)12, or specifically labeled astrocytes in transgenic animals.
Wide-field video-imaging of neuroblast migration in acute slices revealed the saltatory behavior of migrating neuronal precursors composed of two distinct phases: displacement of the neuronal cell body towards the leading process separated by a stationary phase (Figure 3, Movies 1 and 2). To reliably identify the duration of the stationary and migratory phases and to derive other cell migration parameters such as the rate of displacement (calculated only during the migration phases), imaging was performed in 3D using a short acquisition interval (once per 15 or 30 sec). The precise identification of the durations of the stationary and migration phases is crucial for the unambiguous interpretation of data. For example, differences in the distance of migration during a given time period can be induced either by changes in the rate of the migration or by modifications in the duration or periodicity of the migration and stationary phases. These different possibilities cannot be distinguished using long acquisition intervals.
Imaris software was used to analyze the migration of neuroblasts in 3D and to derive additional parameters of cell migration such as track duration and track length, as well as track displacement length, which is a vector of displacement. The track straightness can be also calculated by dividing the track length by the track displacement length and it indicates the straightness of the migrating route of individual neuroblast.
Figure 1. Schematic representation of the preparation of acute live slices. A) Schematic representation of one caudal, one intrahemispheric and two sagittal cuts. B) Schematic representation of placing the mouse brain on the agar block and platform of the vibratome. C) Schematic representation of acute slice incubation chamber. D) Schematic representation of the imaging chamber built on the upright microscope.
Figure 2. Labeling of neuroblasts in the RMS. A) Low magnification image showing robust labeling of neuroblasts and blood vessels in the adult RMS. A retrovirus encoding GFP was injected into the SVZ, and GFP-expressing cells (green) were detected in the RMS after 3 days (left panel). Blood vessels were labeled by injecting dextran TexasRed into the heart of the mouse (red, right panel). The inset shows a high magnification image of blood vessels and virally labeled neuroblasts associated with blood vessels. B) Labeling of different cellular elements in the adult RMS. Neuroblasts were labeled by injecting mCherry-encoding lentivirus in the SVZ (red), astrocytes were labeled by injecting a lentivirus encoding GFP under the control of a GFAP promoter in the RMS (green), and blood vessels were labeled by injecting Dextran CascadeBlue (blue) in the heart. C) Schematic representation of the injection of GAD67-GFP cells dissociated from the SVZ of a GAD67-GFP mouse into the SVZ of an adult wild-type mouse. D) Transplanted GAD67-GFP cells (green) detected in the RMS 7 days after grafting in the SVZ. The RMS is immunostained with GFAP (blue). E) Transplanted GAD67-GFP cells (green) were immunopositive for Dcx (red), but were immunonegative for GFAP (blue). Click here to view larger figure.
Figure 3. Time-lapse imaging of neuroblasts. Time-lapse imaging of neuroblast (green) migration along blood vessels (red). The arrows indicate the migration phases of the neuroblasts, and the arrowheads indicate the stationary phases.
Figure 4. Analysis of neuroblast migration. (A-D) Different steps of neuroblasts migration analysis. The red circles indicate the different functions mentioned in the text. Click here to view larger figure.
Video 1. Time-lapse imaging of virally labeled neuroblasts (green) migrating along dextran TexasRed labeled blood vessels (red). Click here to view video.
Video 2. Tracking neuroblast migration by Imaris software. Green dots indicate cell bodies and tracks indicate the distance of migration. Click here to view video.
The correct targeting of neuronal precursors to the appropriate brain regions is a fundamental process underlying the proper assembly and function of neural circuitry. The vast majority of cells migrate during embryonic development and in the postnatal brain only in a few regions, such as the OB, dentate gyrus and cerebellum, neuronal displacement still takes place. The mechanisms orchestrating cell migration in the postnatal brain remain, however, poorly understood. Knowledge of the mechanisms and molecular pathways involved in guiding cell migration in mature nervous tissues will improve our understanding of neuronal targeting in the postnatal brain and may have clinical relevance for the development of new strategies to induce neuronal recruitment into diseased areas of the brain.
In this manuscript, we describe a protocol for monitoring cell migration in acute slices of the adult mouse forebrain. While we used the adult SVZ-OB pathway as a model system, the same technique can be applied to follow cell migration in the embryonic and early postnatal brains as well as in the adult brain following injury. We used this protocol to follow cell migration in the early postnatal RMS12, cerebellum and adult post-stroke striatum (Eiriz, Grade, Malva and Saghatelyan, unpublished data) .
Imaging of neuroblast migration was performed using acute live slices that allow cell migration to be studied in a microenvironment that closely mimics in vivo conditions. Migrating cells were visualized either by stereotaxic injections of viral particles or by grafting neuroblasts from reporter mice into the SVZ of wild-type mice. The migration analysis was performed far from the injection site. To study tangential migration in the RMS, we prepared acute slices 3-5 days after the neuroblasts were labeled. To study radial migration in the OB, the slices were prepared 7-10 days after a stereotaxic injection into the SVZ. Viral targeting of neuronal precursors in the adult SVZ can be also used to study and modulate factors involved in the migration process by upregulating or downregulating specific molecular cues. It is also possible to label different cell types in the RMS and perform multi-wavelength imaging to unravel the pattern of neuroblasts migration along tracer filled blood vessels4, 13 or along virally or genetically labeled astrocytes2, 12.
To image neuroblast migration we used a motorized fluorescence upright microscope equipped with a CCD camera that allowed relatively rapid acquisitions at different z planes following short pulses (30-100msec) of excitation light. This prevented photobleaching and decreased the time interval between two subsequent acquisitions without interfering with the 3D visualization of neuroblast migration. Other groups have used confocal or two-photon microscopes to monitor cell migration in the postnatal RMS14-16. Both techniques have their advantages and limitations, which are mainly related to temporal and spatial resolutions issues. We recommend using short intervals (15-30 sec) between successive acquisitions. Newborn neurons have saltatory behavior, and migration phases are interrupted by stationary periods that can be as brief as 4-10 min4. Given this type of migration, it is important to use relatively rapid acquisition intervals (15-30 sec) between successive time points to reliably identify the beginning and end of migration and stationary phases. This is difficult to achieve when the time interval between two successive acquisitions is in the range of several minutes. A precise determination of the stationary and migration phases is required to unambiguously define the speed of neuroblast migration, which should be quantified only during the migration phases4, 17. Long acquisition intervals allows to calculate the average speed as the distance traveled over a certain period of time that also includes stationary phases. Changes in the average speed defined by this method, however, can be caused either by differences in the rate of migration (defined only during migration phases) or by the duration of the stationary and migration phases. These differences in acquisition parameters are likely to underlie the discrepancies in the speeds of neuroblasts migration reported by different groups. By performing rapid acquisitions with a 15-30 sec interval and determining the rate of migration exclusively during the migration phases, we calculated a speed of migration of 120-150 μm/h4, 12, whereas other groups, who use an acquisition interval of 3-7 min reported a speed of 50-100 μm/h14, 15, 18. The main drawback of wide-field fluorescent imaging with CCD cameras is that it provides lower spatial resolution than scanning systems. However, since migrating neuroblasts have a compact morphology with soma and short leading processes, a lower spatial resolution does not preclude the reliable identification and tracking of neuroblasts at the level of cell bodies and even leading processes (Figure 3 and Videos 1 and 2).
The technique we describe herein allows neuroblast migration in a microenvironment closely mimicking in vivo conditions to be analyzed, the interactions between different components of the RMS to be studied, and the roles of these interactions in neuroblast migration to be investigated.
The authors have nothing to disclose.
This work was supported by a Canadian Institutes of Health Research (CIHR) grant to A.S. J.K was partially supported by a Université Laval fellowship. A.S. is the recipient of a Canada Research Chair in postnatal neurogenesis.
Name of the reagent | Company | Catalogue number |
Sucrose | Sigma | S9378 |
Glucose (ACSF) | EMD | DX0145-3 |
NaCI | Sigma | S9625 |
KCI | Sigma | P9541 |
MgCI2x6H2O | Sigma-Aldrich | M2670 |
NaHCO3 | Sigma | S5761 |
NaH2PO4xH2O | EMD | SX0710-1 |
CaCI2x2H2O | Sigma-Aldrich | C3881 |
Dextran TexasRed | Invitrogen | D1864 |
Dextran CascadeBlue | Invitrogen | D1976 |
Glucose (40X solution) | Sigma | G8769 |
Sodium pyruvat | Gibco | 11360-070 |
HEPES | Sigma | H3375 |
HBSS | Gibco | 14170-112 |
DNase I | Sigma | D-5025 |
Trypsin-EDTA | Gibco | 25300-054 |
Neurobasal medium | Gibco | 21103-049 |
BSA | EMD | 2930 |
Pen/Strep | Life Technologies | 15140-122 |
Ketamine/Xylazine | CDMV | 5230 |
Pasteur pipette | VWR | 14672-380 |
15 ml conical tube | Sarstedt | 62.553.205 |
50 ml conical tube | Sarstedt | 62.547.205 |
Glass capillaries (stereotaxic injection) | WPI | 4878 |
Paraffin oil | EMD | PX0045-3 |
Proviodine | Rougier | 65655-1370 |
Suture | Stoelting | 50487 |
Anafen | CDMV | 11508 |
20 cc Syringe | VWR | SS-20L2 |
Petri dish | VWR | 25384-094 |
Agar | Laboratoire Mat | AP-0108 |
Glue | Permabond | 910 |
95% O2/5% CO2 | Linde | 24068835 |
Blade | WPI | 501901 |
Nylon mesh | Warner Instruments | 64-0198 |
Centrifuge | Eppendorf | 5702 000.019 |
Pipette puller | Sutter Instrument | P-97 |
Nanoliter injector | WPI | B203MC4 |
Stereotaxic injection apparatus | WPI | 502900 |
Micro drill system | WPI | 501819 |
Vibratome | Thermo Scientific | 920110 |
Wide-field fluorescent microscope | Olympus | BX61WIF |
CCD camera | Photometrics | CS-HQ2-D |
Ultra-quiet imaging chamber | Harvard Apparatus | 64-1487 |
PH-1 Series 20 heater platform | Harvard Apparatus | 64-0284 |
Heating system | Warner Instruments | TC-344B |
40X water immersion objective | Olympus | 1-UM587 |
10X water immersion objective | Olympus | 1-UM583 |
Lambda DG-4 | Sutter Instruments | DG-4/OF |
MetaMorph software | Molecular Devices | 40000 |
Imaris software | Bitplane | BPI-IM70-F1 |