Summary

唾液,唾液腺,淋巴收集肩突硬蜱蜱

Published: February 21, 2012
doi:

Summary

蜱血淋巴感染,唾液腺和唾液的收集是非常重要的研究蜱传病原体引起疾病。在这个协议中,我们演示了如何收集喂血淋巴和唾液腺<em>肩突硬蜱</em>若虫。我们还表明,从女性的唾液收集<em>一。肩胛</em>成年人。

Abstract

蜱遍布世界各地,并与许多蜱传疾病的折磨人类。蜱是莱姆病和蜱传回归热( 伯氏菌),洛矶山斑疹热( 立克次氏体 ),埃立克体病( 查菲埃立克体E.球菌 ),无形体病( 嗜吞噬细胞无形体 ),脑炎(蜱的病原体引起的载体森林脑炎病毒),巴贝斯虫病( 巴贝斯虫属),科罗拉多蜱热(Colti病毒),兔热病( 弗朗西斯tularensis)1-8。要正确传输到主机,这些传染性病原体的差异调节基因表达,与蜱蛋白质交互,并通过蜱3,9-13迁移。例如,莱姆病代理, 莱姆病 ,蜱的地方性周期14,15盛宴和饥荒阶段适应,通过基因差异表达。此外,作为硬蜱蜱消耗吸血从肠到的hemocoel,他们前往唾液腺,并传送到主机与被驱逐的唾液9,16-19复制和迁移。

由于蜱送入主机通常响应与一个强大的止血和先天免疫反应11,13,20-22。尽管这些宿主反应, 一肩胛可以养活了好几天,因为蜱唾液中含有的免疫调节的蛋白质,溶解剂,抗凝血剂,并fibrinolysins帮助蜱喂养3,11,20,21,23。由蜱唾液或唾液腺提取物(SGE)具有免疫调节活动方便,众多的蜱传病原体3,20,24-27的传输,扩散和传播。为了进一步了解如何蜱传播的传染性病原体引起的疾病,它是必不可少的积极剖析饲养蜱和收集蜱唾液。这个视频协议演示的夹层技术从积极喂养血淋巴的收集和唾液腺的去除肩胛若虫后,48和72小时后鼠标的位置。我们还表明,从成年女性唾液收集肩胛蜱。

Protocol

1。幻灯片准备的淋巴集合 (电影1) 动物和外用3%过氧化氢的地方,轻轻地从积极喂养蜱5分钟,然后在70%乙醇10分钟,到表面消毒。 与PAP笔硅烷涂层显微镜幻灯片上绘制一个圆,并放置在PAP笔圈的刻度。 硅烷涂层幻灯片用最好的淋巴坚持显微镜幻灯片。 在解剖显微镜下(1X目标,10X目镜,放大倍率3.5X)蜱。 用钳子轻轻地往下推?…

Discussion

蜱血淋巴,唾液腺和唾液的收集是非常重要的研究蜱传病原体传播,流行,传播,扩散,并在双方的滴答和主机6,11-13,20,23,29的持久性。有几种方法剖析蜱30,31的 。然而,当收集唾液腺关键是正确剖析蜱唾液腺不破裂,或在蜱的遗体丢失。一旦被删除要洗几次,清除肠污染,然后可以固定获得唾液腺提取物(SGE)染色或PBS地面幻灯片上,他们需要从蜱唾液腺。上海黄金交易所是更?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

作者要感谢病媒传播疾病的动物资源科司,特别是安德烈彼得森,丽莎马苏迪,贝尔纳奥布莱恩,约翰·利德尔的老鼠和兔子的关心和维护。我们也想感谢艾米·乌尔曼,特里萨·拉塞尔,和Barbara J.约翰逊朝着这个手稿的贡献。最后,我们想承认艾丽萨埃克特通信在疾病预防控制中心副主任办公室指导拍摄这个手稿与所有相关的合法性产生的插图和朱迪·拉维尔。

Materials

Reagent Company Catalogue Number
Hydrogen peroxide Fisher H312-500
Ethanol Acros 61509-5000
PBS Boston Bioproducts BM-2205
Dumont Fine forceps (3C) Fisher NC9906085
Silane treated microscope slides Bioworld 42763007-1
Pap pen Bioworld 21750008-1
Super frost plus microscope slides Fisher 12-550-18
Pilocarpine Sigma P6503-5G
Protease inhibitor cocktail Sigma P2714
#11 disposable scalpel Feather 2975#11
Nontoxic modeling clay Fisher S17307
Capillary tubes Chase scientific Glass, inc 40A502

Referenzen

  1. Quach, K. A., Boctor, F. N., Elston, D. M. What’s eating you? Hyalomma ticks. Cutis. 87, 165-167 (2011).
  2. Graham, J., Stockley, K., Goldman, R. D. Tick-borne illnesses: a CME update. Pediatr. Emerg. Care. 27, 141-147 (2011).
  3. Nuttall, P. A., Paesen, G. C., Lawrie, C. H., Wang, H. Vector-host interactions in disease transmission. J. Mol. Microbiol. Biotechnol. 2, 381-386 (2000).
  4. Estrada-Pena, A., Jongejan, F. Ticks feeding on humans: a review of records on human-biting Ixodoidea with special reference to pathogen transmission. Exp. Appl. Acarol. 23, 685-715 (1999).
  5. Nuttall, P. A. Pathogen-tick-host interactions: Borrelia burgdorferi and TBE virus. Zentralbl Bakteriol. 289, 492-505 (1999).
  6. Jones, L. D., Hodgson, E., Nuttall, P. A. Enhancement of virus transmission by tick salivary glands. J. Gen. Virol. 70, 1895-1898 (1989).
  7. Labuda, M., Nuttall, P. A. Tick-borne viruses. Parasitol. 129, 221-245 (2004).
  8. Socolovschi, C., Mediannikov, O., Raoult, D., Parola, P. Update on tick-borne bacterial diseases in Europe. Parasite. 16, 259-273 (2009).
  9. Zhang, L., et al. Molecular Interactions that Enable Movement of the Lyme Disease Agent from the Tick Gut into the Hemolymph. PLoS Pathog. 7, e1002079 (2011).
  10. Piesman, J., Schneider, B. S. Dynamic changes in Lyme disease spirochetes during transmission by nymphal ticks. Exp. Appl. Acarol. 28, 141-145 (2002).
  11. Brossard, M., Wikel, S. K. Tick immunobiology. Parasitol. , S161-S176 (2004).
  12. Machackova, M., Obornik, M., Kopecky, J. Effect of salivary gland extract from Ixodes ricinus ticks on the proliferation of Borrelia burgdorferi sensu stricto in vivo. Folia Parasitol. 53, 153-158 (2006).
  13. Nuttall, P. A., Labuda, M. Tick-host interactions: saliva-activated transmission. Parasitol. 129, 177-189 (2004).
  14. Anguita, J., Hedrick, M. N., Fikrig, E. Adaptation of Borrelia burgdorferi in the tick and the mammalian host. FEMS Microbiol. Rev. 27, 493-504 (2003).
  15. Hovius, J. W., van Dam, A. P., Fikrig, E. Tick-host-pathogen interactions in Lyme borreliosis. Trends Parasitol. 23, 434-438 (2007).
  16. Dunham-Ems, S. M., et al. Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. Journal Clin. Invest. 119, 3652-3665 (2009).
  17. Ribeiro, J. M., Mather, T. N., Piesman, J., Spielman, A. Dissemination and salivary delivery of Lyme disease spirochetes in vector ticks (Acari: Ixodidae). J. Med. Entomol. 24, 201-205 (1987).
  18. Piesman, J. Transmission of Lyme disease spirochetes (Borrelia burgdorferi. Exp. Appl. Acarol. 7, 71-80 (1989).
  19. De Silva, A. M., Fikrig, E. Growth and migration of Borrelia burgdorferi in Ixodes ticks during blood feeding. Am. J. Trop. Med. Hyg. 53, 397-404 (1995).
  20. Horka, H., Cerna-Kyckova, K., Skallova, A., Kopecky, J. Tick saliva affects both proliferation and distribution of Borrelia burgdorferi spirochetes in mouse organs and increases transmission of spirochetes to ticks. Int. J. Med. Microbiol. 299, 373-380 (2009).
  21. Brossard, M., Wikel, S. K. Immunology of interactions between ticks and hosts. Med. Vet. Entomol. 11, 270-276 (1997).
  22. Wikel, S. K. Tick modulation of host immunity: an important factor in pathogen transmission. Int. J. Parasitol. 29 (99), 851-859 (1999).
  23. Binnington, K. C., Kemp, D. H. Role of tick salivary glands in feeding and disease transmission. Adv. Parasitol. 18, 315-339 (1980).
  24. Guo, X., et al. Inhibition of neutrophil function by two tick salivary proteins. Infect. Immun. 77, 2320-2329 (2009).
  25. Montgomery, R. R., Lusitani, D., De Boisfleury Chevance, A., Malawista, S. E. Tick saliva reduces adherence and area of human neutrophils. Infect. Immun. 72, 2989-2994 (2004).
  26. Lima, C. M., et al. Differential infectivity of the Lyme disease spirochete Borrelia burgdorferi derived from Ixodes scapularis salivary glands and midgut. J. Med. Entomol. 42, 506-510 (2005).
  27. Severinova, J., et al. Co-inoculation of Borrelia afzelii with tick salivary gland extract influences distribution of immunocompetent cells in the skin and lymph nodes of mice. Folia Microbiol. 50, 457-463 (2005).
  28. Labuda, M., Jones, L. D., Williams, T., Nuttall, P. A. Enhancement of tick-borne encephalitis virus transmission by tick salivary gland extracts. Med. Vet. Entomol. 7, 193-196 (1993).
  29. Kariu, T., Coleman, A. S., Anderson, J. F., Pal, U. Methods for Rapid Transfer and Localization of Lyme Disease Pathogens Within the Tick Gut. J. Vis. Exp. (48), e2544 (2011).
  30. Edwards, K. T., Goddard, J., Varela-Stokes, A. S. Examination of the internal morphology of the Ixodid tick Amblyomma maculatum koch, (Acari:Ixodidae); a “How-to” pictorial dissection guide. Midsouth Entomologist. 2, 28-39 (2009).
  31. Ledin, K. E., et al. Borreliacidal activity of saliva of the tick Amblyomma americanum. Med. Vet. Entomol. 19, 90-95 (2005).
  32. Ribeiro, J. M., Zeidner, N. S., Ledin, K., Dolan, M. C., Mather, T. N. How much pilocarpine contaminates pilocarpine-induced tick saliva?. Med. Vet. Entomol. 18, 20-24 (2004).
  33. Barker, R. W., Burris, E., Sauer, J. R., Hair, J. A. Composition of tick oral secretions obtained by three different collection methods. J. Med. Entomol. 10, 198-201 (1973).
  34. Burgdorfer, W. Hemolymph test. A technique for detection of rickettsiae in ticks. Am. J. Trop. Med. Hyg. 19, 1010-1014 (1970).

Play Video

Diesen Artikel zitieren
Patton, T. G., Dietrich, G., Brandt, K., Dolan, M. C., Piesman, J., Gilmore Jr., R. D. Saliva, Salivary Gland, and Hemolymph Collection from Ixodes scapularis Ticks. J. Vis. Exp. (60), e3894, doi:10.3791/3894 (2012).

View Video