Summary

बहुलक substrates पर माइक्रो और submicron पैटर्न उत्पन्न करने के लिए लिथोग्राफी Micropunching

Published: July 02, 2012
doi:

Summary

एक micropunching लिथोग्राफी दृष्टिकोण सूक्ष्म और शीर्ष, sidewall और बहुलक substrates के नीचे सतहों पर submicron पैटर्न उत्पन्न करने के लिए विकसित की है. यह patterning के पॉलिमर का आयोजन और sidewall के पैटर्न पैदा करने की बाधाओं पर काबू. यह विधि कई सुविधाओं का तेजी से निर्माण की अनुमति देता है और आक्रामक रसायन शास्त्र से मुक्त है.

Abstract

Conducting polymers have attracted great attention since the discovery of high conductivity in doped polyacetylene in 19771. They offer the advantages of low weight, easy tailoring of properties and a wide spectrum of applications2,3. Due to sensitivity of conducting polymers to environmental conditions (e.g., air, oxygen, moisture, high temperature and chemical solutions), lithographic techniques present significant technical challenges when working with these materials4. For example, current photolithographic methods, such as ultra-violet (UV), are unsuitable for patterning the conducting polymers due to the involvement of wet and/or dry etching processes in these methods. In addition, current micro/nanosystems mainly have a planar form5,6. One layer of structures is built on the top surfaces of another layer of fabricated features. Multiple layers of these structures are stacked together to form numerous devices on a common substrate. The sidewall surfaces of the microstructures have not been used in constructing devices. On the other hand, sidewall patterns could be used, for example, to build 3-D circuits, modify fluidic channels and direct horizontal growth of nanowires and nanotubes.

A macropunching method has been applied in the manufacturing industry to create macropatterns in a sheet metal for over a hundred years. Motivated by this approach, we have developed a micropunching lithography method (MPL) to overcome the obstacles of patterning conducting polymers and generating sidewall patterns. Like the macropunching method, the MPL also includes two operations (Fig. 1): (i) cutting; and (ii) drawing. The “cutting” operation was applied to pattern three conducting polymers4, polypyrrole (PPy), Poly(3,4-ethylenedioxythiophen)-poly(4-styrenesulphonate) (PEDOT) and polyaniline (PANI). It was also employed to create Al microstructures7. The fabricated microstructures of conducting polymers have been used as humidity8, chemical8, and glucose sensors9. Combined microstructures of Al and conducting polymers have been employed to fabricate capacitors and various heterojunctions9,10,11. The “cutting” operation was also applied to generate submicron-patterns, such as 100- and 500-nm-wide PPy lines as well as 100-nm-wide Au wires. The “drawing” operation was employed for two applications: (i) produce Au sidewall patterns on high density polyethylene (HDPE) channels which could be used for building 3D microsystems12,13,14, and (ii) fabricate polydimethylsiloxane (PDMS) micropillars on HDPE substrates to increase the contact angle of the channel15.

Protocol

MPL की ए Schematics macropunching विधि "काटने" और "ड्राइंग" आपरेशन भी शामिल है. "काटने" आपरेशन तेज धार उत्तल संरचनाओं के molds को गोद ले और तीन बुनियादी कदम (1 छवि (A1-A3)) शामिल हैं. सबसे पहले, एक कठोर सब्सट?…

Discussion

समस्या निवारण जानकारी: पॉलिमर और धातु "काटने" आपरेशन का उपयोग करने के लिए एकल और बहु – परत micropatterns की पीढ़ी के बारे में गंभीर अंक: (1) embossing के तापमान मध्यवर्ती PMMA परत जो इष्टतम परिणाम उत्पन्न की तरलता ?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

इस काम में भाग NSF के NSFDMI – 0508454 / LEQSF (2006) Pfund-53-NSF CMMI 0,811,888 और 0,900,595 अनुदान-NSF CMMI के माध्यम से समर्थित किया गया था.

Materials

Name of the reagent Company Catalogue number Comments
PMMA Sigma-Aldrich Co. 495C9 The solvent is cholorobenzene. Handle PMMA solution under a fume hood with adequate ventilation. Do not breathe the vapor. Refer to MSDS for safe handling instructions.
PPy Sigma-Aldrich Co. 5% by weight in water. Used as received.
PEDOT-PSS H. C. Starck Co. Baytron P HC V4 Proprietary solvent. Used as received.
SPANI Sigma-Aldrich Co. Water soluble form. Used as received.
Hot embossing machine JenoptikMikrotechnik Co. HEX 01/LT  
Sputter machine Cressington Co. 208HR  
FIB machine Zeiss Co. FIB Crossbeam 1540 XB  
Spin coater Headway Reseach Co. PWM32-PS-R790 Spinner System  
RIE machine Technics MicroRIE Co.  
Photoresist Shipley Co. S1813  
PDMS Dow Corning Sylgard 184 Silicone elastomer kit  
HDPE sheet US Plastic Incorporate  
PMMA sheet Cyro Co.  
Double-sided adhesive tape Scotch Co.  
Single-sided tape Delphon Co. Ultratape # 1310  
Glass micropipettes FHC Co. 30-30-1  
Clip Office Depot Co. Bulldog clip  
Humidifier Vicks Co. Filter free humidifier  

Referenzen

  1. Menon, R. Conducting polymers: Nobel Prize in Chemistry, 2000. Current Science. 79, 1632 (2000).
  2. Inzelt, G., Pineri, M., Schultze, J. W., Vorotyntsev, M. A. Electron and proton conducting polymers: recent developments and prospects. Electrochimica Acta. 45, 2403 (2000).
  3. Adhikari, B., Majumdar, S. Polymers in sensor applications. Progress in Polymer Science. 29, 699 (2004).
  4. Chakraborty, A., Liu, X., Parthasarathi, G., Luo, C. An intermediate-layer lithography method for generating multiple microstructures made of different conducting polymers. Microsystem Technologies. 13 (8), 1175 (2007).
  5. Madou, M. . Fundamentals of Microfabrication. , (1995).
  6. Bustillo, J. M., Howe, R. T., Muller, R. S. Surface micromachining for microelectromechanical systems. Proceedings of the IEEE. 86, 1552 (1998).
  7. Liu, X., Luo, C. Intermediate-layer lithography for producing metal micropatterns. Journal of Vacuum Science and Technology B. 25, 677 (2007).
  8. Chakraborty, A., Luo, C. Multiple conducting polymer microwire sensors. Microsystem Technologies. 15, 1737 (2009).
  9. Chakraborty, A., Liu, X., Luo, C., Mason, E. C., Weber, A. P. . Polypyrrole: A new patterning approach and applications. Polypyrrole: Properties, Performance and Applications. , (2011).
  10. Poddar, R., Luo, C. A novel approach to fabricate a PPy/p-type Si heterojunction. Solid-State Electronics. 50, 1687 (2006).
  11. Liu, X., Chakraborty, A., Luo, C., Martingale, J. P. . Generation of all-polymeric diodes and capacitors using an innovative intermediate-layer lithography. Progress in Solid State Electronics Research. , 127-139 (2008).
  12. Liu, X., Luo, C. Fabrication of Au sidewall micropatterns using a Si-reinforced PDMS mold. Sensors and Actuators A. 152, 96 (2009).
  13. Liu, X., Chakraborty, A., Luo, C. Fabrication of micropatterns on the sidewalls of a thermal shape memory polystyreme block. Journal of Micromechanics and Microengineering. 20, 095025 (2010).
  14. Chakraborty, A., Liu, X., Luo, C. Fabrication of micropatterns on channel sidewalls using strain-recovery property of a shape-memory polymer. Sensors and Actuators A. , (2011).
  15. Liu, X., Luo, C. Fabrication of supe-hydrophobic channels. Journal of Micromechanics and Microengineering. 20, 25029 (2010).
  16. Luo, C., Meng, F., Liu, X., Guo, Y. Reinforcement of PDMS master using an oxide-coated silicon plate. Microelectronics Journal. 37, 5 (2006).
  17. Luo, C., Garra, J., Schneider, T., White, R., Currie, J., Paranjape, M. Thermal ablation of PMMA for water release using a microheater. Sensors and Actuators A. 114, 123 (2004).
check_url/de/3725?article_type=t

Play Video

Diesen Artikel zitieren
Chakraborty, A., Liu, X., Luo, C. Micropunching Lithography for Generating Micro- and Submicron-patterns on Polymer Substrates. J. Vis. Exp. (65), e3725, doi:10.3791/3725 (2012).

View Video