Summary

利用反向遗传学操作的裂谷热病毒MP - 12菌株,以提高疫苗的安全性和有效性的NSS基因

Published: November 01, 2011
doi:

Summary

裂谷热病毒的MP – 12疫苗株反向遗传学系统是一个有用的工具,用于创建附加的MP – 12突变体具有更高的衰减性和免疫原性。我们描述了协议的产生和表征NSS突变株。

Abstract

裂谷热病毒(RVFV),从而导致出血热,神经系统疾病,或在人类中的盲目性,以及高利率流产和反刍动物胎儿畸形1,已被列为作为HHS /美国农业部重叠选择代理和风险组3病原体。它属于在家庭BunyaviridaePhlebovirus,是这个家庭的最致命的成员之一。自2006年以来已开发的RVFV MP – 12疫苗株2,3以及野生型RVFV 4-6株,包括ZH548和ZH501,几个反向遗传学系统。 MP – 12株(这是一个危险群2病原体和非选择代理)是由几个突变,其M -和L段高度减毒,但仍带有剧毒分部的S 3,其编码的RNA功能的毒力因素,NSS。 rMP12 C13type(C13type)进行帧删除NSS的ORF 69%缺乏所有已知的NSS功能,而它复制为efficient作为MP – 12在VeroE6细胞缺乏I型干扰素。 NSS包括干扰素(IFN)-βmRNA的7,8诱导的转录主机关闭,并促进在翻译后水平降解双链RNA依赖的蛋白激酶(PKR)9,10 IFN -β转录干扰素调节因子3(IRF – 3),NF – kB和激活蛋白-1(AP – 1),IFN -β结合IFN-alpha/beta受体(IFNAR)上调刺激IFN -α的转录虽然IRF – 3,NF – kB和激活的基因或其他干扰素刺激基因(ISGs)11,诱导宿主的抗病毒活性,而主机包括NSS IFN -β基因的转录抑制阻止病毒复制的基因upregulations这些ISGs蛋白1(AP – 1),可以通过RVFV7激活。 。因此,NSS是一个很好的的目标,以进一步削弱MP – 12,并取消IFN -β的抑制功能,以提高主机的先天免疫反应。这里,我们描述了产生重组MP – 12的编码突变NSS的协议,并提供一种检查方法,找出缺乏的功能,抑制IFN -βmRNA的合成NSS突变体的一个例子。除了 ​​其在先天免疫系统的重要作用,I型干扰素是重要的树突状细胞诱导适应性免疫反应 12-14的成熟。因此,NSS突变体诱导I型干扰素的进一步减弱,但在同一时间在刺激宿主的免疫反应更有效率比野生型MP – 12,这使得它们接种疫苗的方法理想人选。

Protocol

1。 2质粒DNA的重组的MP – 12编码NSS突变(S)的回收传播幼仓鼠肾(BHK)/ T7 – 15 9细胞,稳定表达T7 RNA聚合酶,到6厘米的菜最起码的基本介质中(MEM)-α(Invitrogen公司,CAT#32561037),含10%胎牛血清( FBS ),青霉素,链霉素(青霉素100 U /毫升,链霉素100微克/毫升)(Invitrogen公司,CAT#15140122),和600微克/ ml的潮霉素B(Cellgro,猫#30 – 240 – CR)。 *病毒回收效率在6厘…

Discussion

为RVFV反向遗传学系统已经开发了几个小组利用T7启动子2,4,5或鼠标34 POL -我子。在这个手稿中,我们描述了一个协议, 使用15个稳定表达T7 RNA聚合酶BHK/T7-9细胞产生重组RVFV MP – 12菌株。不同的病毒回收效率取决于BHK/T7-9细胞的条件,质粒量,转染细胞和数量等。我们总是放大的P0病毒在Vero E6细胞,获得高滴度实验的病毒储存。 I型干扰素主管的细胞,如人肺二倍体?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项工作是由赠款5号U54通过西方优秀的区域中心(WRCE)AI057156 – 07,R01从国家过敏和传染病研究所AI08764301 – A1,西利疫苗开发中心,在大学内部资金德克萨斯州医学科。

Materials

Name of the reagent Company Catalogue number Comments (optional)
Minimum Essential Medium (MEM)-alpha Invitrogen 32561037  
Dulbecco’s modified minimum essential medium Invitrogen 11965092  
Modified Eagle Medium (MEM 2x) Invitrogen 11935046  
Penicillin-Streptomycin Invitrogen 15140122  
Hygromycin B Cellgro 30-240-CR  
Tryptose phosphate broth MP biomedicals 1682149  
Noble agar VWR 101170-362  
TransIT-LT1 Mirus MIR2300  
Opti-MEM Invitrogen 31985070  
Aerosol tight lid Eppendorf C-2223-25  
0.33% neutral red solution Sigma Aldrich N2889-100ML  
C57/WT MEF cells InvivoGen mef-c57wt  
Blasticidin S InvivoGen Ant-bl-1  
Zeocin InvivoGen ant-zn-1  
QUANTI-Blue InvivoGen rep-qb1  
BHK/T7-9 cells15 Gifu university, Japan    
Vero E6 cells ATCC CRL-1586  

Referenzen

  1. Bird, B. H., Ksiazek, T. G., Nichol, S. T., Maclachlan, N. J. Rift Valley fever virus. J. Am. Vet. Med. Assoc. 234, 883-893 (2009).
  2. Ikegami, T., Won, S., Peters, C. J., Makino, S. Rescue of infectious rift valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene. J. Virol. 80, 2933-2940 (2006).
  3. Billecocq, A. RNA polymerase I-mediated expression of viral RNA for the rescue of infectious virulent and avirulent Rift Valley fever viruses. Virology. 378, 377-384 (2008).
  4. Habjan, M., Penski, N., Spiegel, M., Weber, F. T7 RNA polymerase-dependent and -independent systems for cDNA-based rescue of Rift Valley fever virus. J. Gen. Virol. 89, 2157-2166 (2008).
  5. Gerrard, S. R., Bird, B. H., Albarino, C. G., Nichol, S. T. The NSm proteins of Rift Valley fever virus are dispensable for maturation, replication and infection. Virology. 359, 459-465 (2007).
  6. Billecocq, A. NSs protein of Rift Valley fever virus blocks interferon production by inhibiting host gene transcription. J. Virol. 78, 9798-9806 (2004).
  7. May, N. L. e. TFIIH transcription factor, a target for the Rift Valley hemorrhagic fever virus. Cell. 116, 541-550 (2004).
  8. Ikegami, T. Rift Valley fever virus NSs protein promotes post-transcriptional downregulation of protein kinase PKR and inhibits eIF2alpha phosphorylation. PLoS Pathog. 5, e1000287-e1000287 (2009).
  9. Habjan, M. NSs protein of Rift valley fever virus induces the specific degradation of the double-stranded RNA-dependent protein kinase. J. Virol. 83, 4365-4375 (2009).
  10. Garcia-Sastre, A., Biron, C. A. Type 1 interferons and the virus-host relationship: a lesson in detente. Science. 312, 879-882 (2006).
  11. Bon, A. L. e. Type i interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity. 14, 461-470 (2001).
  12. Le Bon, A., Tough, D. F. Links between innate and adaptive immunity via type I interferon. Curr. Opin. Immunol. 14, 432-436 (2002).
  13. Tough, D. F. Type I interferon as a link between innate and adaptive immunity through dendritic cell stimulation. Leuk. Lymphoma. 45, 257-264 (2004).
  14. Ito, N. Improved recovery of rabies virus from cloned cDNA using a vaccinia virus-free reverse genetics system. Microbiol. Immunol. 47, 613-617 (2003).
  15. Terasaki, K., Murakami, S., Lokugamage, K. G., Makino, S. Mechanism of tripartite RNA genome packaging in Rift Valley fever virus. Proc. Natl. Acad. Sci. U.S.A. 108, 804-809 (2010).
  16. Buchholz, U. J., Finke, S., Conzelmann, K. K. Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J. Virol. 73, 251-259 (1999).
  17. Diaz, M. O. Homozygous deletion of the alpha- and beta 1-interferon genes in human leukemia and derived cell lines. Proc. Natl. Acad. Sci. U.S.A. 85, 5259-5263 (1988).
  18. Mosca, J. D., Pitha, P. M. Transcriptional and posttranscriptional regulation of exogenous human beta interferon gene in simian cells defective in interferon synthesis. Mol. Cell. Biol. 6, 2279-2283 (1986).
  19. Constantinescu, S. N. Expression and signaling specificity of the IFNAR chain of the type I interferon receptor complex. Proc. Natl. Acad. Sci. U.S.A. 92, 10487-10491 (1995).
  20. Kumar, K. G., Tang, W., Ravindranath, A. K., Clark, W. A., Croze, E., Fuchs, S. Y. SCF(HOS) ubiquitin ligase mediates the ligand-induced down-regulation of the interferon-alpha receptor. EMBO J. 22, 5480-5490 (2003).
  21. Kakach, L. T., Suzich, J. A., Collett, M. S. Rift Valley fever virus M segment: phlebovirus expression strategy and protein glycosylation. Virology. 170, 505-510 (1989).
  22. Kakach, L. T., Wasmoen, T. L., Collett, M. S. Rift Valley fever virus M segment: use of recombinant vaccinia viruses to study Phlebovirus gene expression. J. Virol. 62, 826-833 (1988).
  23. Niwa, H., Yamamura, K., Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 108, 193-199 (1991).
  24. Muller, R. Characterization of clone 13, a naturally attenuated avirulent isolate of Rift Valley fever virus, which is altered in the small segment. Am. J. Trop. Med. Hyg. 53, 405-411 (1995).
  25. Le May, N. A SAP30 complex inhibits IFN-beta expression in Rift Valley fever virus infected cells. PLoS Pathog. 4, e13-e13 (2008).
  26. Kalveram, B., Lihoradova, O., Ikegami, T. NSs Protein of Rift Valley Fever Virus Promotes Post-Translational Downregulation of the TFIIH Subunit p62. J. Virol. 85, 6234-6243 (2011).
  27. Taniguchi, T., Ogasawara, K., Takaoka, A., Tanaka, N. IRF family of transcription factors as regulators of host defense. Annu. Rev. Immunol. 19, 623-655 (2001).
  28. Marie, I., Durbin, J. E., Levy, D. E. Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J. 17, 6660-6669 (1998).
  29. Ikegami, T., Won, S., Peters, C. J., Makino, S. Rift Valley fever virus NSs mRNA is transcribed from an incoming anti-viral-sense S RNA segment. J. Virol. 79, 12106-12111 (2005).
  30. Mims, C. A. Rift Valley Fever virus in mice. I. General features of the infection. Br. J. Exp. Pathol. 37, 99-109 (1956).
  31. Bouloy, M. Genetic evidence for an interferon-antagonistic function of rift valley fever virus nonstructural protein NSs. J. Virol. 75, 1371-1377 (2001).
  32. Bird, B. H., Albarino, C. G., Nichol, S. T. Rift Valley fever virus lacking NSm proteins retains high virulence in vivo and may provide a model of human delayed onset neurologic disease. Virology. 362, 10-15 (2007).

Play Video

Diesen Artikel zitieren
Kalveram, B., Lihoradova, O., Indran, S. V., Ikegami, T. Using Reverse Genetics to Manipulate the NSs Gene of the Rift Valley Fever Virus MP-12 Strain to Improve Vaccine Safety and Efficacy. J. Vis. Exp. (57), e3400, doi:10.3791/3400 (2011).

View Video