本文介绍了制备荧光标记的版本,λ噬菌体感染的程序<em> E.大肠杆菌</em>细菌,感染后在显微镜下的结果,和感染结果的分析。
该系统包括lambda和细菌大肠杆菌噬菌体(噬菌体)曾长期担任大肠杆菌细胞命运决定的典范1,2。继由数量噬菌体感染的细胞的同时,选择两种途径之一:裂解(毒力)或溶原性(休眠)3,4。最近,我们开发了一种方法用于荧光标记单个噬菌体,并能够检查实时决定感染后在显微镜下,在单个噬菌体和细胞5的水平。在这里,我们描述的全部程序进行感染实验,在我们前面的工作5。这包括创建的荧光噬菌体感染的细胞,在显微镜下的成像和数据分析。的荧光是一种“混合”,共表达的野生型和YFP-融合版本的衣壳GPD蛋白的噬菌体。根据粗略的噬菌体裂解第一次获得通过诱导溶原GPD-EYFP(ENH均衡的黄色荧光蛋白)的噬菌体,窝藏表达质粒的野生型GPD。然后进行一系列的纯化步骤,然后在显微镜下用DAPI标记和成像。这样做是为了验证的均匀性,DNA的包装效率,荧光信号和结构稳定性的噬菌体库存。进行的初始吸附到细菌的噬菌体在冰上,然后依次由一个短的孵育在35℃至触发病毒DNA注射6。噬菌体/细菌混合物然后移动到的表面上的薄的营养琼脂平板,用盖玻片覆盖,并落射荧光显微镜下成像。感染后处理后4小时,以10分钟的间隔。跟踪多个阶段的位置使得在一个实验中,可以追溯到〜100细胞感染。在每个位置和时间点,获取图像的相位相反,红色和绿色荧光通道。相位对比图像用于以后的自动化CELL的认可,同时荧光通道是用来描述感染的结果:新的荧光噬菌体(绿色),然后通过细胞裂解,或表达的溶源性因素(红色)其次是恢复细胞生长和分裂的生产。收购时间推移电影使用手动和自动相结合的方法进行处理。数据分析的结果,在每个感染事件(例如,感染噬菌体的数量和位置),以及感染的结果(裂解/溶源性)的感染参数的识别。附加参数,如果需要的话,可以提取。
菌株,噬菌体和质粒:
菌株LE392就是supF。这是选择抑制的噬菌体基因组的的SAM7突变在(有关详细信息,请参阅表1)。因此,诱导细胞溶素原最终会裂解,并释放噬菌体颗粒,将受感染的细胞,所选择的裂解途径。溶源细胞生长在30℃,由于温度敏感的cI 857的噬菌体基因组中的等位基因的存在。热诱导后,GPD-EYFP和野生型GPD共同从基因组为λLZ1和质粒pPlate的* D分别表示。其结果是,新创建的λ噬菌体LZ2衣壳包含GPD-EYFP和GPD蛋白的混合物。这马赛克噬菌体是结构稳定和足够的荧光,以允许检测单个噬菌体5。 PP RE – mCherry是记者的质粒用于检测到选择的溶原性pathwa的Y。启动子P RE被激活由CII期间1,11溶源性成立。来自PE-GFP 11 12 mCherry更换绿色荧光蛋白基因与PP RE – mCherry 5。有关详细信息,请参阅我们早期的工作5。
生长条件的参数:
(第1节),在溶原菌的诱导轻微的晃动在180rpm提供了一个很好的病毒产量13。在生长培养基中使用的葡萄糖应该避免,因为葡萄糖代谢产生酸性代谢产物,并在酸性pH值13的成熟的lambda颗粒是不稳定的。用MgSO 4的另外的目的是稳定的噬菌体衣壳3。携带野生型CI(而不是857 词 )的噬菌体,溶原可诱导的DNA损伤剂丝裂霉素C 3。步骤1.3中,在37°C的潜伏期一般应不超过90分钟。这是大家有用微升通过OD 600每30分钟检查细胞密度。有一个良好的溶胞产物中,OD 600下降到约0.2或更低,和剩余的OD 600是一个结果的细胞碎片。孵化过长,可能导致在一个较低的噬菌体的产率,因为新创建的噬菌体可以开始他们的DNA注入到细胞碎片。为了获得一个可见的噬菌体带(至少1×10 11噬菌体颗粒),在步骤2.11和2.13,增长至少500毫升的文化,在第1.2步。此外,0.2%的麦芽糖培养基中生长,在5.1和5.2的目的是诱导表达的羔羊,λ噬菌体的受体吸附3,14。记者质粒PP RE – mCherry旨在减少mCherry背景水平,而不是步骤5.2的100倍,1000倍稀释液。在步骤5.5中的噬菌体DNA注入触发,35°C的选择,以避免诱导的温度敏感cI857等位基因。
噬菌体净化:
jove_content“>噬菌体纯化步骤(步骤2.1到2.11)可以与其它净化协议5取代,但最终超速离心通过CsCl平衡梯度(步骤2.12及2.13)是不可避免的。摇摆铲斗转子需要在步骤2.10和2.12至确保锐利可见噬菌体带。获得纯噬菌体可以很容易地采取了一个星期,所以它是必要的检查沿途的噬菌体滴度,以确保没有出错过程中的中间步骤。噬菌体处理:
在第2纯化过程中,关键是处理噬菌体裂解液轻轻地从噬菌体头,以避免剪切噬菌体的尾巴。在第5节(例如,步骤5.5到5.7)中的细胞的感染,它也是很关键的,以避免从被感染的细胞中的噬菌体颗粒的剪切。请注意,如果噬菌体被剪切其DNA注入后从被感染的细胞,其结果是一个“暗”感染,即在fection结果将在实验中观察到,但不会感染噬菌体。为了尽量减少这样的问题,我们使用了一个广泛的移液器吸头时处理的噬菌体或噬菌体/细胞混合物。
DAPI测试:
染色噬菌体与DAPI(第4),是一种快速,有效的方法来检查产品的纯度的噬菌体。它也可以被用于测试可能降解的一个现有的噬菌体库存中随着时间的推移。对于一个纯粹的股票,在荧光显微镜下YFP和DAPI信号的定位应该是接近100%。通常,我们观察,YFP的斑点,小于1%的不包含DAPI(表示无病毒基因组的衣壳),这表明这些颗粒没有成功打包病毒DNA,或已经注入了他们的DNA别处。小于1%的DAPI斑点不包含YFP(相应非荧光噬菌体)。如果不是这种情况下,步骤2.12至2.14需要被重复在邻刻申,净化一次。成像参数方面,在显微镜安装在步骤4.3是至关重要的,因为在第5,在这里,因为没有长期活细胞成像。但是如在第5部分,保持相同的显微镜设置是有用的,如果一个人希望校准一个单一的噬菌体颗粒的荧光强度。如果也不是很干净,或太多的DAPI染料用于PBS-琼脂糖切片,一些DAPI染色斑点相应的噬菌体DNA可以用“卤素”包围。如果使用太少的DAPI染料的DAPI信道的信号,可以是非常弱的。
显微镜系统:
对于成像在第6条中,我们利用了倒落射荧光显微镜(ECLIPSE TE2000-E,尼康)100倍的目标(计划FLUO,数值孔径1.40,浸油)和标准过滤器集(尼康)。的荧光的光源是一个电弧灯与光强度的控制。下面的功能是电脑控制:X,Y和Z宝sition明场和荧光百叶窗和荧光过滤器的选择。一个自动对焦的功能是必需的。否则,焦点可以很容易地渐行渐远在时间的推移电影(通常4小时之久)。在每个时间点的能力获得多个位置(X,Y)是有用的,因为它允许遵循在平行的多重感染事件。我们通常在每部电影,获得8级职位跟进到100感染事件。我们使用的相机是CCD与冷却的512×512 16×16微米像素摄像头,支持16的位(Cascade512,光度)的动态范围。使用MetaMorph软件(Molecular Devices公司)进行收购事项。显微镜时,应被放置在一个温度受控室,或者,在显微镜载物台应通过一个温度控制的室包围。
图像采集:
活细胞成像,这是至关重要的样品,以避免不必要的暴露,这可能导致漂白,河粉totoxicity。因此,最好是先描述您的系统找到一个最佳的光线照射,它允许用于荧光检测,而不会导致过多的漂白剂或抑制细胞生长。为了获得一个良好的荧光图像,发挥激发光强度,暴露时间和摄像机的增益。在步骤6.2-6.3,在10分钟的帧间隔被选择曝光最小化的目的。在每个帧中,只有一个单一的在焦像需要在相位对比(细胞识别)和荧光通道(用于确定细胞的命运)。在第一时间点,但是,多个通过YFP通道的z位置的图像必需能够捕获所有感染噬菌体在细胞表面上。 YFP的曝光时间的初始帧中可能还需要要高于用于在稍后的时间帧中的时间间隔短片。
图像分析:
非常仔细地计算噬菌体颗粒周围的细胞表面的步骤7.1。如如上所述,我们采取了一系列步骤6.2 YFP通道的Z-栈通过。然而,这仍可能留下一些荧光噬菌体颗粒的焦点,挑战计数。细胞在初始时间帧的长度测量使用Metamorph软件。也可以测定细胞长度ImageJ的或其他软件工具。此外,自动化家居的Matlab程序是非常有用的,如沿细胞系,荧光随时间变化的信息。
The authors have nothing to disclose.
我们感谢迈克尔·Feiss和Jean鸭嘴的指导噬菌体创建和净化。我们感谢迈克尔Elowitz提供细胞识别软件,Schnitzcell。在戈尔丁实验室工作的支持,补助金从国家卫生研究院(R01GM082837),美国国家科学基金会(082265,PFC:活细胞的物理中心),韦尔奇基金会(批准Q-1759)和人类前沿科学计划(RGY二千〇八分之七十)。
Name of the reagent | Company | Catalogue number |
Chloroform | Fisher Scientific | C298-500 |
NaCl | Fisher Scientific | S271-3 |
DNase I | Sigma | D4527-10KU |
RNase | Sigma | R4642-10MG |
PEG8000 | Fisher Scientific | BP233-1 |
SM buffer | Teknova | S0249 |
NZYM | Teknova | N2062 |
CsCl | Sigma | C3011-250G |
Syringe | Becton Dickinson | 309585 |
Needle | Becton Dickinson | 305176 |
Dialysis cassette | Thermo Scientific | 66333 |
Microscope slide | Corning | 2947-75×50 |
Agarose | Fisher Scientific | BP160-100 |
SW40Ti ultra-clear tube | Beckman Coulter | 344060 |
SW60Ti ultra-clear tube | Beckman Coulter | 344062 |
SW40Ti rotor | Beckman Coulter | 331302 |
SW60Ti rotor | Beckman Coulter | 335649 |
Refractometer | Fisher Scientific | 13-947 |
Epifluorescence microscope | Nikon | Eclipse TE2000-E |
Table 2. Reagents and equipment.