Se describe un método para seleccionar de forma individual, manipular, y los agentes patógenos de imágenes en vivo con una trampa óptica acoplada a un microscopio de disco giratorio. La trampa óptica proporciona un control espacial y temporal de los organismos y los coloca junto a las células huésped. Microscopía de fluorescencia captura dinámica de interacciones intercelulares con perturbación mínima para las células.
Imágenes dinámicas de células vivas permite la visualización directa de la interacción en tiempo real entre las células del sistema inmunológico 1, 2, sin embargo, la falta de control espacial y temporal entre los fagocitos y el microbio ha hecho observaciones se centró en las interacciones iniciales de la respuesta del huésped frente a patógenos difícil. Históricamente, los eventos intracelulares de contacto como la fagocitosis 3 han sido fotografiadas por la mezcla de dos tipos de células, y luego continua explorando el campo de visión para encontrar los contactos intercelulares casual en la fase adecuada de la interacción. La naturaleza estocástica de estos eventos hace que este proceso tedioso, y es difícil de observar los acontecimientos a principios o fugaces en contacto célula-célula por este enfoque. Este método requiere la búsqueda de pares de células que están en el punto de contacto, y observar hasta que consuman su contacto, o no. Para hacer frente a estas limitaciones, el uso captura óptica como un no-invasivo, método no destructivo, pero rápida y eficaz a la posición de las células en cultivo.
Trampas ópticas, o las pinzas ópticas, son cada vez más utilizada en la investigación biológica para capturar y manipular físicamente las células y otras partículas de tamaño micrométrico en tres dimensiones 4. La presión de radiación fue observado por primera vez y se aplican a los sistemas de pinzas ópticas en 1970, 5, 6, y fue utilizado por primera vez al control de las muestras biológicas en 1987 7. Desde entonces, las pinzas ópticas han madurado hasta convertirse en una tecnología para explorar una variedad de fenómenos biológicos 8-13.
Se describe un método de 14 que los avances en directo imágenes de células mediante la integración de una trampa óptica con el hilado de microscopía confocal de disco con control de temperatura y humedad para proporcionar un control exquisito espacial y temporal de los organismos patógenos en un entorno fisiológico para facilitar la interacción con las células huésped, según lo determine el operador. En vivo, los organismos patógenos, como Candida albicans y Aspergillus fumigatus, que puede causar potencialmente letal, infecciones invasivas en pacientes inmunocomprometidos, 15, 16 (por ejemplo, el SIDA, la quimioterapia y los pacientes de trasplante de órganos), quedaron atrapados ópticamente no destructiva utilizando intensidades de láser y se trasladó junto a macrófagos, que pueden fagocitar el patógeno. Alta resolución, transmite películas de luz y fluorescencia basada estableció la posibilidad de observar los primeros eventos de la fagocitosis de las células vivas. Para demostrar la amplia aplicabilidad en la inmunología, la primaria de células T también fueron atrapados y manipulados para formar sinapsis con anti-CD3 microesferas recubiertas en vivo, y el tiempo-lapse de imágenes de la formación de sinapsis se obtuvo también. Al proporcionar un método para ejercer un control preciso espacial de patógenos vivos con respecto a las células inmunes, las interacciones celulares pueden ser capturados por microscopía de fluorescencia con un mínimo de perturbación a las células y pueden producir una poderosa comprensión de las primeras respuestas de inmunidad innata y adaptativa.
En este trabajo se utiliza una trampa óptica para capturar los agentes patógenos, con dimensiones de 3 m – 5 micras. A pesar de los patógenos de interés para nuestro laboratorio suelen tener estas dimensiones, el sistema de pinzas ópticas se describe aquí es flexible para atrapar a una amplia gama de tamaños. De hecho trampas ópticas han sido utilizados para capturar las partículas que van desde los átomos individuales a las células de aproximadamente 10 micras de diámetro. Además, este sistema de captura ?…
The authors have nothing to disclose.
Este trabajo fue apoyado por el Hospital General de Massachusetts Departamento de Medicina de Fondos Internos (JMT, MKM, MLC, JMV), Instituto Nacional de Imágenes Biomédicas y Bioingeniería conceder T32EB006348 (CEC), Centro de Hospital General de Massachusetts para el fondo de la biología del desarrollo de la Computación e Integrativa y AI062773 ( RJH), las subvenciones AI062773, DK83756, y DK 043 351 (RJX), NSF 0643745 (MJL), NIH R21CA133576 (MJL), y el Instituto Nacional de Alergias y Enfermedades Infecciosas (NIAID) de los Institutos Nacionales de Salud (NIH) AI057999 (JMV ). Damos las gracias a Nicholas C. Yoder útil para los debates, y Fieltros Charles (RPI, Inc.) para la asistencia técnica.
Name of the reagent | Company | Catalogue number | Comments (optional) |
---|---|---|---|
A. fumigatus | Albino strain, B-5233/RGD12-8, gift from K.J. Kwon-Chung, NIH | ||
C. albicans | SSY50-B mutant, gift from Eleftherios Mylonakis, MGH; SC5314 strain, gift from Gerald Fink, Whitehead Institute | ||
Alexa Fluor 488 | Invitrogen | A20000 | |
Alexa Fluor 647 | Invitrogen | A20006 | |
dimethylformamide | Sigma | D4551 | |
Fresh blood | Gift from R.J.W. Heath, MGH, HMS | ||
Nikon inverted microscope | Nikon | Model Ti-E | |
Trapping laser, ChromaLase | Blue Sky Research | CLAS-106-STF02-02 | |
Fluorescence excitation laser | Coherent | Model Innova 70C | |
Breadboards for trapping components | Thorlabs | MB1224, MB1218 | |
Optical air table | Technical Manufacturing Corporation | ||
Electronic shutter with pedal control | Uniblitz | Purchased from Vincent Associates, Rochester, NY | |
Singlemode optical fiber | Oz Optics | PMJ-3S3S-1064-6 | |
Fiber positioner | Thorlabs | PAF-X-5-C | |
Fiber collimator | Oz Optics | HPUCO-23-1064-P-25AC | |
Lenses for telescope | Thorlabs | AC254-150-B | Focal length of 150 mm |
Translation stages (x, y, z) | Newport | M-461-XYZ | |
IR dichroic mirror | Chroma | ET750-sp-2p8 | |
Objective lens (100X) | Nikon | NA = 1.49, oil immersion, TIRF objective | |
Confocal head | Yokogawa | CSU-XI | |
Polarizer | Nikon | MEN51941 | |
Wollaston prism | Nikon | MBH76190 | |
EM-CCD camera | Hamamatsu | C9100-13 | |
CCD camera (ORCA ER) | Hamamatsu | C4742-80-12AG | |
Filter wheel | Ludl | 99A353 | |
Filter wheel | Sutter | LB10-NWE | |
Chambered coverglass | Lab-Tek/Nunc | 155409 | |
Dynabeads | Invitrogen | 111-51D | Coated with anti-CD3 |
Dulbecco’s modified Eagle’s medium (DMEM) | Invitrogen/Gibco | 10313 | |
Penicillin/streptomycin | Invitrogen/Gibco | 15140-122 | |
L-glutamine | Invitrogen/Gibco | 25030-081 | |
Fetal Bovine Serum (HyClone) | ThermoScientific | SH30071.03 |