Summary

Enregistrement à partir de cellules entières une préparation de tranches organotypiques du néocortex

Published: June 03, 2011
doi:

Summary

C'est un protocole pour préparer et maintenir une préparation de tranches de néocortex culture organotypique dans le but de réaliser des enregistrements électriques des neurones pyramidaux.

Abstract

Nous avons étudié les rôles d'expression et fonctionnelles des canaux voltage-dépendants de potassium dans les neurones pyramidaux du néocortex de rat. En raison de l'absence d'agents pharmacologiques spécifiques pour ces canaux, nous avons pris une approche génétique de la manipulation de l'expression des canaux. Nous utilisons une préparation culture organotypique (16) afin de maintenir la morphologie cellulaire et le modèle laminaire du cortex. En général, nous isoler aiguë tranches néocorticales à 8-10 jours post-natal et de maintenir les tranches en culture pendant 3-7 jours. Cela nous permet d'étudier les neurones à un âge similaire à ceux de notre travail avec des tranches aiguës et minimise le développement des connexions excitatrices exubérante dans la tranche. Nous enregistrons d'identifier visuellement les neurones pyramidaux des couches II / III ou V à l'aide d'éclairage infrarouge (IR-) et microscopie à contraste interférentiel différentiel (DIC) avec pince de cellules de patch tout en courant ou voltage-clamp. Nous utilisons biolistique (canon à gènes) transfection de type sauvage ou mutante ADN canal potassique de manipuler l'expression des canaux d'étudier leur fonction. Les cellules transfectées sont facilement identifiables par microscopie à épifluorescence après co-transfection avec l'ADNc pour la protéine fluorescente verte (GFP). Nous comparons les enregistrements de cellules transfectées à proximité, les neurones non transfectées dans la même couche de la même tranche.

Protocol

1. Préparatifs avant le Jour de tranchage Nous trouvons qu'il est plus efficace de l'autoclave des instruments chirurgicaux et préparer des solutions avant le jour de trancher. Instruments autoclave. (La chirurgie et le tranchage sont réalisées sous des conditions semi-stériles). Autoclaver les paquets suivants, emballés individuellement dans du papier autoclave: Forfait Chirurgie: spatule, n ° 22 porte-lame de scalpel, ciseaux…

Discussion

Nous avons étudié les rôles d'expression et fonctionnelles des canaux voltage-dépendants de potassium dans les neurones pyramidaux du néocortex de rat (4, 9-11). En raison de l'absence d'agents pharmacologiques spécifiques pour ces canaux, nous utilisons une approche génétique pour manipuler l'expression de canal (1,14,15,17-19). Nous utilisons une préparation culture organotypique (2,3; 5-8; 12,13,15-22). Modifiée de l'approche de Stoppini et al (16), afin de maintenir la…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

Les auteurs tiennent à remercier Mayumi Sakuraba et Rebecca Foehring d'assistance technique exceptionnelle. En outre, nous tenons à remercier les Drs. Rodrigo Andrade pour l'aide à mettre en œuvre la culture organotypique et des protocoles de transfection biolistique et le Dr Jeanne Nerbonne pour nous fournir avec des constructions d'ADNc pour la transfection. Ce travail a été soutenu par le NIH Grant: NS044163 du NINDS (aux FCR).

Materials

Surgery / transfection / culture:

  1. Brain Slicer: Campden Vibroslice #MA572 World Precision Instruments, Sarasota, FL, USA
  2. Gene Gun System: Bio-Rad Helios # 165-2431 (Bio-Rad Laboratories, 1000 Alfred Nobel Drive, Hercules, CA 94547)
    • Includes: Gene gun, helium hose assembly with regulator, tubing prep station (#165-2418), syringe kit, Tefzel tubing, tubing cutter, optimization kit (#165-2424), tubing cutter
    • Bio-Rad Helium Regulator (#165-2413)
    • disposable supplies for Helios from Bio-Rad:
      • 1.6 μm Gold Microcarriers: #165-2264
      • Tefzel Tubing: #165-2441
  3. Incubator: Forma Scientific model # 3110 (Thermo-Scientific: (866) 984- 3766).

Media:

  1. Horse Serum: Hyclone donor equine #SH 30074. (HyClone, 925 West 1800 South, Logan, UT 84321)
  2. HMEM (Minimal Essential Media plus HBSS and HEPES, no glutamine: Lonza BioWhittaker Catalog #12-137F): GIBCO/INVITROGEN, (800) 955- 6288, Option 1.
  3. HBSS (GIBCO Hanks buffered saline, #24020-117): GIBCO/INVITROGEN, (800) 955- 6288, Option 1.
  4. MEM (GIBCO minimal essential medium, #12360-038), GIBCO/INVITROGEN, (800) 955- 6288, Option 1.
  5. 250 mL Millipore 0.2 μm filter: #SC6PU02RE
  6. Plastic Transfer pipettes: Fisher #13-711-20.
  7. 50 mL Millipore steriflip 0.22 μm filter (#SCGP00525)

Items 6-8 obtained from: Fisher Scientific, 1241 Ambassador Blvd, P.O. Box 14989, St. Louis, MO 63132.

Recording:

  1. Pipet glass: Harvard GC150TF-10: Harvard Apparatus, 84 October Hill Road, Holliston, Massachusetts 01746
  2. Sutter P-87 horizontal electrode puller: Sutter Instrument Company, One Digital Drive, Novato, CA 94949
  3. Axon Instruments Multiclamp 700B amplifier: Molecular Devices, Inc. 1311 Orleans Drive, Sunnyvale, CA 94089-1136
  4. PClamp 10 data acquisition software: Molecular Devices, Inc., 1311 Orleans Drive, Sunnyvale, CA 94089-1136
  5. lectrode position is controlled with Sutter ROE-200 manipulators and PC-200 controller: Sutter Instrument Company, One Digital Drive, Novato, CA 94949.
  6. Microscope: Olympus BX-50WI upright microscope with IR-DIC optics
  7. IR-sensitive camera OLY-150 (Olympus) or DAGE-MTI (DAGE-MTI, 01 North Roeske Avenue, Michigan City, IN 46360).

Referenzen

  1. Beique, J. C., Imad, M., Mladenovic, L., Gingrich, J. A., Andrade, R. Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci U S A. 104, 9870-9875 (2007).
  2. Buonomano, D. V. Timing of neural responses in cortical organotypic slices. Proc Natl Acad Sci U S A. 100, 4897-4902 (2003).
  3. Caeser, M., Bonhoeffer, T., Bolz, J. Cellular organization and development of slice cultures from rat visual cortex. Exp Brain Res. 77, 234-244 (1989).
  4. Foehring, R. C., Toleman, T., Higgs, M., Guan, D., Spain, W. J. Actions of Kv2.1 channels in rat neocortical pyramidal neurons. Soc Neurosci Abstr. 34, (2009).
  5. Gähwiler, B. H. Organotypic monolayer cultures of nervous tissue. J Neurosci Methods. 4, 329-342 (1981).
  6. Gähwiler, B. H. Organotypic cultures of neural tissue. Trends Neurosci. 11, 484-489 (1988).
  7. Gähwiler, B. H., Capogna, M., Debanne, D., McKinney, R. A., Thompson, S. M. Organotypic slice cultures: a technique has come of age. Trends Neurosci. 20, 471-477 (1997).
  8. Gähwiler, B. H., Thompson, S. M., Muller, D. Preparation and Maintenance of Organotypic Slice Cultures of CNS Tissue. Current Protocols in Neuroscience. , 6.11.1-6.11.11 (2001).
  9. Guan, D., Lee, J. C., Tkatch, T., Surmeier, D. J., Armstrong, W. E., Foehring, R. C. Expression and biophysical properties of Kv1 channels in supragranular neocortical pyramidal neurones. J Physiol. 571, 371-389 (2006).
  10. Guan, D., Lee, J. C. F., Higgs, M., Spain, W. J., Armstrong, W. E., Foehring, R. C. Functional roles of Kv1 containing channels in neocortical pyramidal neurons. J. Neurophysiol. 97, 1931-1940 (2007).
  11. Guan, D., Tkatch, T., Surmeier, D. J., Armstrong, W. E., Foehring, R. C. Kv2 subunits underlie slowly inactivating potassium current in rat neocortical pyramidal neurons. J Physiol. 581, 941-960 (2007).
  12. Johnson, H. A., Buonomano, D. V. A method for chronic stimulation of cortical organotypic cultures using implanted electrodes. Neurosci Methods. 176, 136-143 (2009).
  13. Johnson, H. A., Buonomano, D. V. Development and plasticity of spontaneous activity and Up states in cortical organotypic slices. J Neurosci. 27, 5915-5925 (2007).
  14. Malin, S. A., Nerbonne, J. M. Delayed rectifier K+ currents, IK, are encoded by Kv2 alpha-subunits and regulate tonic firing in mammalian sympathetic neurons. J Neurosci. 22, 10094-10105 (2002).
  15. O’Brien, J. A., Holt, M., Whiteside, G., Lummis, S. C., Hastings, M. H. Modifications to the hand-held Gene Gun: improvements for in vitro biolistic transfection of organotypic neuronal tissue. J Neurosci Methods. 112, 57-64 (2001).
  16. Stoppini, L., Buchs, P. A., Muller, D. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods. 37, 173-182 (1991).
  17. Villalobos, C., Shakkottai, V. G., Chandy, K. G., Michelhaugh, S. K., Andrade, R. SKCa channels mediate the medium but not the slow calcium-activated afterhyperpolarization in cortical neurons. J Neurosci. 24, 3537-3542 (2004).
  18. Walker, P. D., Andrade, R., Quinn, J. P., Bannon, M. J. Real-time analysis of preprotachykinin promoter activity in single cortical neurons. J Neurochem. 75, 882-885 (2000).
  19. Woods, G., Zito, K. Preparation of gene gun bullets and biolistic transfection of neurons in slice culture. J Vis Exp. , (2008).
  20. O’Brien, J. A., Lummis, S. C. Biolistic transfection of neuronal cultures using a hand-held gene gun. Nat Proc. 1, 977-981 (2006).
  21. Joshi, P., Dunaevsky, A. Gene gun transfection of hippocampal neurons. J Vis Exp. , (2006).
  22. Biewanga, J. E., Destree, O. H., Scharma, L. H. . J Neurosci Met. 71, 67-75 (1997).

Play Video

Diesen Artikel zitieren
Foehring, R. C., Guan, D., Toleman, T., Cantrell, A. R. Whole Cell Recording from an Organotypic Slice Preparation of Neocortex. J. Vis. Exp. (52), e2600, doi:10.3791/2600 (2011).

View Video