Summary

共培养模型绿脓杆菌现场人类呼吸道细胞生长的生物膜

Published: October 06, 2010
doi:

Summary

本文介绍了成长的不同方法<em>绿脓杆菌</em>对培养的人类呼吸道上皮细胞的生物膜。这些协议可以适应研究生物膜形成的不同方面,包括可视化的生物膜,生物膜染色,测量菌落形成单位(CFU)的生物膜,研究生物膜的细胞毒性。

Abstract

细菌生物膜与多种人类疾病的数量,但生物膜的发展已普遍在非生物表面研究。在本文中,我们描述了人类呼吸道上皮细胞培养(CFBE细胞)形成铜绿假单胞菌生物膜的协议。在第一种方法(称为静态共培养生物膜模型),P.绿脓杆菌是与标准组织培养板汇合单层生长的CFBE细胞培养。虽然细菌是上皮细胞的毒性,除了单层的破坏精氨酸延误时间足够长的生物膜形成上的CFBE细胞。第二种方法(称为流细胞共培养生物膜模型),涉及适应生物膜的流动池装置,这是在生物膜研究中,经常使用,以适应支持CFBE细胞融合单层玻璃盖玻片。这是接种单层与体育假单胞菌和蠕动泵,然后流经细胞的新鲜培养基。在两个系统中,细菌生物膜的形成,接种后6-8小时内。生物膜的可视化是提高使用 P. 假单胞菌菌株表达绿色荧光蛋白(GFP)。静态和流动细胞共培养生物膜检测早期体育的模型系统绿脓杆菌感染的囊性纤维化(CF)的肺,这些技术允许不同方面的P.假单胞菌生物膜的形成和毒性研究,包括生物膜的细胞毒作用,生物膜CFU测量,染色和可视化生物膜。

Protocol

1。静态共培养生物膜模型静态共培养生物膜模型1使用CFBE41o细胞(CFBE细胞),这是永生细胞最初是从个人发展与ΔF508- CFTR的突变 2,3,4 CF合子。 CFBE细胞应接种/ 6孔组织培养板在24孔组织培养板在最短的基本培养基辅以10%胎牛血清(MEM)或2 × 10 5 10 6个细胞的浓度, 2mm的L -谷氨酰胺,50 U / mL青霉素,50μg/ mL链霉素。我们使用1.5毫升培养基,每孔6孔板和24孔?…

Discussion

生物膜是细菌的社区环境刺激的反应形式。这些环境的信号导致全球监管的变化,在每个细菌,导致绑定到表面,聚集,胞外多糖生产,和其他表型,如抗生素耐药性增加10。在过去几十年里,大量的证据支持的假说,即生物膜在慢性感染的发病机制中发挥了很大的作用。举例来说,它是可接受的, 体育绿脓杆菌是能够建立在囊性纤维化(CF)患者肺部慢性感染,形成生物膜</su…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

我们要感谢G. Ø图勒在开发这些模型的指导和建议。囊性纤维化基金会(ANDERS06F0 GGA,STANTO07RO和STANTO08GA到BAS),美国国立卫生研究院(T32A107363 GGA和R01 – HL074175到BAS),这项工作是支持国家研究资源中心的生物医学研究的卓越中心(COBRE P20 – RR018787到BAS)。

Materials

Material Name Typ Company Catalogue Number Comment
FCS2 (Focht Live-Cell) chamber   Bioptechs, Butler, PA 060319131616  
FCS2 chamber controller   Bioptechs, Butler, PA 060319-2-0303  
40 mm glass coverslips   Bioptechs, Butler, PA PH 40-1313-0319  
MEM   Mediatech, Manassass, VA #10-010-CV  
MEM without phenol red   Mediatech, Manassass, VA Mediatech, Manassass, VA  

Referenzen

  1. Anderson, G. G., Moreau-Marquis, S., Stanton, B. A., O’Toole, G. A. In vitro analysis of tobramycin-treated Pseudomonas aeruginosa biofilms on cystic fibrosis-derived airway epithelial cells. Infect Immun. 76, 1423-1433 (2008).
  2. Bruscia, E. Isolation of CF cell lines corrected at DeltaF508-CFTR locus by SFHR-mediated targeting. Gene Ther. 9, 683-685 (2002).
  3. Cozens, A. L. CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol. 10, 38-47 (1994).
  4. Hentchel-Franks, K. Activation of airway cl- secretion in human subjects by adenosine. Am J Respir Cell Mol Biol. 31, 140-146 (2004).
  5. Moreau-Marquis, S. The DeltaF508-CFTR mutation results in increased biofilm formation by Pseudomonas aeruginosa by increasing iron availability. Am J Physiol Lung Cell Mol Physiol. 295, 25-37 (2008).
  6. Kuchma, S. L., Connolly, J. P., O’Toole, G. A. A three-component regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa. J Bacteriol. 187, (2005).
  7. Heydorn, A. Experimental reproducibility in flow-chamber biofilms. Microbiology. 146 (Pt 10), 2409-2415 (2000).
  8. Heydorn, A. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology. 146 (Pt 10), 2395-2407 (2000).
  9. Anderson, G. G., Yahr, T. L., Lovewell, R. R., O’Toole, G. A. The Pseudomonas aeruginosa magnesium transporter MgtE inhibits transcription of the type III secretion system. Infect Immun. 78, (2010).
  10. Costerton, J. W. Overview of microbial biofilms. J Ind Microbiol. 15, 137-140 (1995).
  11. Hoiby, N., Frederiksen, B., Pressler, T. Eradication of early Pseudomonas aeruginosa infection. J Cyst Fibros. 4, 49-54 (2005).
  12. Ko, Y. H., Pedersen, P. L. Cystic fibrosis: a brief look at some highlights of a decade of research focused on elucidating and correcting the molecular basis of the disease. J Bioenerg Biomembr. 33, 513-521 (2001).
  13. Gibson, R. L., Burns, J. L., Ramsey, B. W. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med. 168, 918-951 (2003).
  14. Furukawa, S., Kuchma, S. L., O’Toole, G. A. Keeping their options open: acute versus persistent infections. J Bacteriol. 188, 1211-1217 (2006).
  15. Merritt, J. H., Kadouri, D. E., O’Toole, G. A. Growing and analyzing static biofilms. Curr Protoc Microbiol. Chapter 1, Unit 1B 1-Unit 1B 1 (2005).
  16. O’Toole, G. A., Kolter, R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol. 28, 449-461 (1998).
  17. Gomez, M. I., Prince, A. Opportunistic infections in lung disease: Pseudomonas infections in cystic fibrosis. Curr Opin Pharmacol. 7, 244-251 (2007).

Play Video

Diesen Artikel zitieren
Moreau-Marquis, S., Redelman, C. V., Stanton, B. A., Anderson, G. G. Co-culture Models of Pseudomonas aeruginosa Biofilms Grown on Live Human Airway Cells. J. Vis. Exp. (44), e2186, doi:10.3791/2186 (2010).

View Video