Source: Cornwell, A. B., et al. The Replica Set Method: A High-throughput Approach to Quantitatively Measure Caenorhabditis elegans Lifespan. J. Vis. Exp. (2018).
This video describes a traditional, plate-based method of measuring the lifespan of C. elegans. The example protocol measures the lifespan of worms treated with RNAi.
The following protocol is an excerpt from Cornwell et al, The Replica Set Method: A High-throughput Approach to Quantitatively Measure Caenorhabditis elegans Lifespan, J. Vis. Exp. (2018).
1. Preventing progeny production by the addition of 5-Fluoro-2'-deoxyuridine (FUdR)
2. Scoring viability
Figure 1: The Traditional and the Replica Set Method for scoring C.elegans lifespan (A). The Traditional Method for scoring C. elegans lifespan. Several small synchronized populations of isogenic animals per condition are followed over time. The same population of animals is followed throughout the study course. Viability is assessed by movement, which may be stimulated by gentle prodding. Animals that fail to move are scored as dead and are removed (aspiration shown) until no viable animals remain. (B). The Replica Set Method for scoring C. elegans lifespan. A large population of age-synchronized isogenic animals are distributed across a number of identical replicate plates. At each time point, a single replicate is scored: a mild buffered solution (M9) is added, which stimulates movement. Animals that fail to move spontaneously after flooding wells are also assessed via touch stimulus. The scoring duration for the experiment is determined prior to the start. Each animal is scored only once and longevity for the larger population is derived from many independent observations. (C). The Replica Set approach is a high throughput method to quantitatively measure C. elegans lifespan. 100 or more independent RNAi clones can be tracked simultaneously. HT115 E. coli expressing dsRNA for a given RNAi clone is shown. Practically, every 24 samples from the 96-well plate are divided into a single 24-well plate. Each resulting 24-well plate has a negative (i.e. empty vector, red well) and positive control (green well) randomly distributed within a collection of RNAi clones (yellow wells). Typically, the first well (A1) in a collection contains an empty vector. Please click here to view a larger version of this figure.
FuDR (5-Fluoro-2'-deoxyuridine) | Alfa Aesar | L16497 | |
24 Well Culture Plates | Greiner Bio-One | #662102 | |
600 µL 96-well plates | Greiner Bio-One | #786261 | |
2mL 96-well plates | Greiner Bio-One | #780286 | |
96-pin plate replicator | Nunc | 250520 | |
C. elegans RNAi clone library in HT115 bacteria- Ahringer | Source Bioscience | C. elegans RNAi Collection (Ahringer) | See also Kamath et. al, Nature 2003. |
C. elegans RNAi clone library in HT115 bacteria- Vidal | Source Bioscience | C. elegans ORF-RNAi Resource (Vidal) | See also Rual et. al, Genome Research 2004. This library is also available from Dharmacon. |
L4440 Empty Vector Plasmid | Addgene | 1654 | https://www.addgene.org/1654/ |