Back to chapter

14.3:

Convolution: Math, Graphics, and Discrete Signals

JoVE Core
Electrical Engineering
Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich.  Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
JoVE Core Electrical Engineering
Convolution: Math, Graphics, and Discrete Signals

Sprachen

Teilen

In any LTI system, the convolution of two signals is denoted using a convolution operator, assuming all initial conditions are zero.

The convolution integral is divided into two parts: the zero-input or natural response and the zero-state or forced response of the system, with t0 indicating the initial time.

The convolution integral can be simplified by presuming that both the input signal and impulse response are zero for negative time values.

Graphical convolution involves four steps: Folding, Shifting, Multiplication, and Integration. Consider an RC circuit with a specified input pulse signal and output response. Initially, folding is performed by creating a mirror image of the input signal along the y-axis. This is followed by a slight shift, multiplication, and integration of the resulting signals. The resulting convolution is depicted graphically.

In discrete-time convolution, the response is determined by applying an input to a discrete-time system and using the impulse response and convolution integral.

The convolution of the discrete input signal and impulse response forms the convolution sum for the system response.

14.3:

Convolution: Math, Graphics, and Discrete Signals

In any LTI (Linear Time-Invariant) system, the convolution of two signals is denoted using a convolution operator, assuming all initial conditions are zero. The convolution integral can be divided into two parts: the zero-input or natural response and the zero-state or forced response, with t0 indicating the initial time.

To simplify the convolution integral, it is assumed that both the input signal and impulse response are zero for negative time values. The graphical convolution process involves four steps: folding, shifting, multiplication, and integration.

Consider an RC circuit with a specified input pulse signal and output response. Initially, folding is performed by creating a mirror image of the input signal along the y-axis. This is followed by shifting, where the folded signal is slid along the time axis. Next, the multiplication of the folded and shifted signals is done point-by-point. Finally, the integration of the resulting signal over time provides the convolution result. This process can be depicted graphically.

In discrete-time convolution, the system's response is determined by applying an input to a discrete-time system and using the impulse response and convolution sum. The convolution of the discrete input signal x[n] and the impulse response h[n] forms the convolution sum for the system response:

Equation1

This sum computes the output signal y[n] at each discrete time step n. Understanding both continuous and discrete convolution is essential for analyzing LTI systems and predicting their behavior in response to various inputs.