Back to chapter

10.2:

La regolazione dell'espressione genica avviene in più passaggi

JoVE Core
Molekularbiologie
Zum Anzeigen dieser Inhalte ist ein JoVE-Abonnement erforderlich.  Melden Sie sich an oder starten Sie Ihre kostenlose Testversion.
JoVE Core Molekularbiologie
Regulation of Expression Occurs at Multiple Steps

Sprachen

Teilen

Le cellule possono regolare con precisione l’espressione genica in ogni fase, dal DNA alle proteine. Questa regolazione si verifica durante la trascrizione, durante l’elaborazione, la localizzazione e la degradazione dell’RNA, e durante e dopo la traduzione. La regolazione trascrizionale è mediata da proteine che si legano a sequenze regolatrici sul DNA.Questi fattori di trascrizione sono uno dei modi più comuni per controllare l’espressione genica e possono o iniziare la trascrizione o prevenirla. La trascrizione genera il pre-mRNA che deve essere processato per mRNA maturo, attraverso parecchi processi regolati. L’mRNA splicing, che rimuove le regioni non codificanti nel precursore, mRNA e unisce quelle codificanti, controlla l’espressione genica attraverso schemi di splicing differenziale e legami RNA e proteine.Viene controllata anche l’aggiunta di una coda di poli(A)e di un cap a 5 primi, per produrre l’mRNA maturo. Successivamente, l’mRNA deve associarsi alle proteine di legame dell’RNA, per formare un complesso conosciuto come ribonucleoparticelle. Questo processo è altamente regolato, e solo un mRNA che esiste in una ribonucleoparticella, può essere trasportato dal nucleo al citoplasma da tradurre.Il controllo traslazionale, è un altro punto cruciale per la regolazione dell’espressione genica. La regolazione può essere specifica, dove sono coinvolti un individuo o un sottoinsieme di mRNA, o generale, dove la maggior parte dei trascritti di mRNA sono influenzati. Nella regolazione specifica, l’inibizione della traduzione è controllata attraverso interazioni con elementi transattivi come proteine e certi tipi di RNA, compresi microRNA e brevi RNA interferenti.Nella regolazione generale, le varie proteine coinvolte nel meccanismo di traduzione, sono attivate o inibite, in tutti i trascritti. Infine, le modifiche post-traduzionali, come la fosforilazione, possono attivare o disattivare le proteine, mentre altre come l’ubiquitinazione, possono portare alla loro degradazione.

10.2:

La regolazione dell'espressione genica avviene in più passaggi

Gene expression can be regulated at almost every step from gene to protein. Transcription is the step that is most commonly regulated. This involves the binding of proteins to short regulatory sequences on the DNA. This association can either promote or inhibit the transcription of a gene associated with the respective sequence.

Transcription results in the generation of precursor (pre-mRNA) that consists of both exons and introns, which needs further processing before being translated to a protein. This happens through mRNA splicing, which involves the removal of non-coding regions and merging of the coding ones. mRNA processing can also be used as a regulatory mechanism through variation in splicing patterns such as skipping of certain exons, alternative splicing, and inclusion of introns. 

The addition of a poly-A tail at the 3’ end and a 5’ cap to produce the mature mRNA are also regulatory points during RNA processing. Regulation occurs through variation in the polyadenylation signal, which determines where the poly-A tail will be added onto the mRNA.  In some cases, more than one poly-A signal is present at the 3’ end which will change the length of the 3’ untranslated region, but the final protein product will be the same. However, the stability and the translation potential the variants mRNA may differ, which can alter the amount of protein produced. In other cases, an additional poly-A signal is present on the intron or exon within the gene sequence which may lead to variation in splicing sites for polyadenylation and result in different proteins from the same strand of pre-mRNA.The addition of the 5’ cap, which is made up of methylated guanosine, is regulated by two mechanisms.  One involves the regulation of the methyltransferases that add the methyl group to the guanosine, and the other is through regulation of the cellular signaling pathways that lead to methylation.

Next, the mature mRNA needs to be transported from the nucleus to the cytoplasm through nuclear pore complexes (NPCs) to be translated. This is regulated by the mRNA to forming a complex, known as the ribonucleoparticle, with RNA binding proteins. NPCs only allow mRNAs that are in the complex to pass into the cytoplasm. Once an mRNA enters the cytoplasm for translation, it can either be targetted individually or as a part of a group through specific regulations, or it can undergo a common regulation with all other mRNAs in the cytoplasm. In specific regulation, particular trans-acting elements, like proteins and different types of RNAs, regulate transcription. In general regulation, the proteins involved in the translation machinery are activated or inhibited, which in turn affects the translation of all transcripts. The most common translational regulatory mechanism is the modification of the translation initiation factor.

Gene expression can also be regulated through post-translational modifications, where an enzyme-catalyzed reversible modification can alter the function of a protein. A common post-translational modification is phosphorylation, which is carried out by enzymes known as kinases. Dephosphorylation of proteins, on the other hand, is carried out by proteins known as phosphatases. Phosphorylation of a protein can result in its activation or deactivation and alter its function.

Suggested Reading

  1. Alberts et al., 6th edition; page 372
  2. Lodish H, Berk A, Zipursky SL, et al. Molecular Cell Biology. 4th edition. New York: W. H. Freeman; 2000. Section 11.3, Regulation of mRNA Processing.
  3. Valencia-Sanchez, M. A., Liu, J., Hannon, G. J., & Parker, R. (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes & development, 20(5), 515-524.
  4. Lei, E. P., & Silver, P. A. (2002). Protein and RNA export from the nucleus. Developmental cell, 2(3), 261-272.
  5. Hershey, John W B et al. “Principles of translational control: an overview.” Cold Spring Harbor perspectives in biology vol. 4,12 a011528. 1 Dec. 2012, doi:10.1101/cshperspect.a011528