This protocol describes a methodology to differentiate microglia from human iPSCs and maintain them in co-culture with iPSC-derived cortical neurons in order to study mechanistic underpinnings of neuroimmune interactions using human neurons and microglia.
The ability to generate microglia from human induced pluripotent stem cells (iPSCs) provides new tools and avenues for investigating the role of microglia in health and disease. Furthermore, iPSC-derived microglia can be maintained in co-culture with iPSC-derived cortical neurons, which enable investigations of microglia-neuron interactions that are hypothesized to be dysregulated in a number of neuropsychiatric disorders. Human iPSCs were differentiated to generate microglia using an adapted version of a protocol developed by the Fossati group, and the iPSC-derived microglia were validated with marker analysis and real-time PCR. Human microglia generated using this protocol were positive for the markers CD11C, IBA1, P2RY12, and TMEM119, and expressed the microglial-related genes AIF1, CX3CR1, ITGAM, ITGAX, P2RY12, and TMEM119. Human iPSC-derived cortical neurons that had been differentiated for 30 days were plated with microglia and maintained in co-culture until day 60, when experiments were undertaken. The density of dendritic spines in cortical neurons in co-culture with microglia was quantified under baseline conditions and in the presence of pro-inflammatory cytokines. In order to examine how microglia modulate neuronal function, calcium imaging experiments of the cortical neurons were undertaken using the calcium indicator Fluo-4 AM. Live calcium activity of cortical neurons was obtained using a confocal microscope, and fluorescence intensity was quantified using ImageJ. This report describes how co-culturing human iPSC-derived microglia and cortical neurons provide new approaches to interrogate the effects of microglia on cortical neurons.
In the human brain, microglia are the primary innate immune cells1. Brain development is regulated by microglia via two routes: release of diffusible factors and phagocytosis1. Microglia-derived diffusible factors help support myelination, neurogenesis, synaptic formation, maturation, cell death, and cell survival1. Microglia also phagocytize various elements in brain synapses, axons and in both living and dead cells2,3,4,5,6,7,8. Receptors on microglia recognize tags such as calreticulin, ATP, and sialic acid and regulate cellular phagocytosis9,10. In the hippocampus, microglia maintain the homeostasis of neurogenesis through its phagocytic role11.
Synaptic phagocytosis in the dorsolateral geniculate nucleus (dLGN) of the rodent brain has been shown to be regulated by microglia1. In rodents, it has been shown that there are two periods during the development when intense microglial synaptic phagocytosis is observed. The first period occurs during initial synapse formation and the second period occurs when connections are being fine-tuned and pruned12. Other factors that are involved in synaptic pruning are inflammatory proteins and the Class I major histocompatibility complex (MHC1, H2-Kb and Db)13,14. It has been suggested that C1q (complement component 1q) on the microglia colocalizes with MHC1, which triggers synaptic pruning15. Furthermore, mouse studies show that interleukin-33 (IL-33) secreted by astrocytes regulates synapse homeostasis in the thalamus and the spinal cord through its effects on microglia, though this has yet to be investigated in humans13. Microglia secrete a variety of cytokines that help maintain neuronal health, such as tumor necrosis factor α (TNFα), IL-1β, IL-6, IL-10 and interferon-γ (IFN-γ) and these cytokines can modulate dendritic spine and synapse formation16,17,18. There are significant gaps in our knowledge of neuron-microglia interactions during human brain development. Most of our knowledge comes from studies from rodent models, while there is a paucity of information on the temporal and mechanistic aspects of synaptic pruning in the human cortex. Microglia support neuronal survival in the neo-cortex, and other cell types contribute as well1. It is not clear how microglia contribute to this preservation and what the interplay between microglia and the other cell types are. Microglia release several cytokines that affect neuronal and synaptic development but the mechanistic basis of their effects of these cytokines in neurons are largely unknown19,20. In order to develop a more complete understanding of the function of microglia in the human brain, it is critical to explore its interactions with different cell types found in the human brain. This report describes a method to co-culture human iPSC-derived neurons and microglia generated from the same individual. Establishing this methodology will enable well-defined investigations to interrogate the nature of microglia-neuronal interactions and to develop robust in vitro cellular models to study neuroimmune dysfunction in the context of different neurodevelopmental and neuropsychiatric disorders.
The role of microglia in schizophrenia
Synaptic pruning is a major neurodevelopmental process that takes place in the adolescent brain21,22. Multiple lines of evidence suggest that synaptic pruning during this critical period is abnormal in schizophrenia (SCZ)23,24,25,26. SCZ is a chronic, debilitating psychiatric disorder characterized by hallucinations, delusions, disordered thought processes and cognitive deficits23,24. Microglia, the resident macrophages in the brain, play a central role in synaptic pruning25,26. Postmortem and positron emission tomography (PET) studies show evidence for dysfunctional microglial activity in SCZ25,26,27,28,29,30,31,32. Postmortem SCZ brains show well-replicated but subtle differences in the brain – pyramidal neurons in the cortical layer III show decreased dendritic spine density and fewer synapses33,34,35. Synaptic pruning is a process by which superfluous excitatory synaptic connections are eliminated by microglia during adolescence, when SCZ patients usually have their first psychotic break22,36. Postmortem studies show an association between SCZ and microglial activation, with increased density of microglia in SCZ brains, as well as increased expression of proinflammatory genes27. In addition, PET studies of human brains using radioligands for microglial activation show increased levels of activated microglia in the cortex25,26,27,28. Recent genome-wide association studies (GWAS) show that the strongest genetic association for SCZ resides in the major histocompatibility complex (MHC) locus, and this association results from alleles of the complement component 4 (C4) genes that are involved in mediating postnatal synaptic pruning in rodents37. This association has provided additional support for the hypothesis that aberrant pruning by microglia may result in the decreased dendritic spine density seen in SCZ postmortem brains. Investigations of microglial involvement in synaptic pruning in SCZ have so far been limited to indirect studies with PET imaging or inferences from investigations of postmortem brains.
Generating human microglia in the laboratory
Cultured primary mouse microglia have been frequently used in studying microglia, though there are several indications that rodent microglia may not be representative of human microglial anatomy and gene expression (Table 1)38. Several studies have also differentiated microglia directly from blood monocytes through transdifferentiation39,40,41,42. Blood monocyte-derived microglia-like cells exhibit major differences from human microglia in gene and protein expression profile pro-inflammatory responses, and they appear to be more macrophage-like in their biology43. Recent methodological advances now enable the generation of microglia from human iPSCs, which provide opportunities to study live microglia that more accurately resemble the biology of microglia found in the human brain (Table 2). These iPSC-derived microglial cells have been shown to recapitulate the phenotype, gene expression profiles, and functional properties of primary human microglia44,45,46,47,48. This paper provides a method to co-culture human iPSC-derived neurons and microglia generated from the same individual in order to develop personalized in vitro models of neuron-microglia interactions. For this in vitro co-culture model, a microglial differentiation protocol from the Fossati group was adapted (Table 3) and combined with an adapted version of a cortical neuronal generation protocol from the Livesey group (Table 4)49,50.
The human iPSCs used in this study were reprogrammed from fibroblasts that had been obtained through informed consent from healthy control subjects, with approval from the institutional review board (IRB). The reprogramming and characterization of iPSCs used in this study (ML15, ML27, ML40, ML56, ML141, ML 250, ML292) were described in a prior study51.
1. Maintenance of iPSCs
2. Microglia differentiation
NOTE: A schematic outlining the microglia differentiation protocol is depicted in Figure 1A. Media were warmed to room temperature before use.
3. Cortical neuron differentiation
NOTE: A schematic outlining the cortical neuron differentiation protocol is depicted in Figure 1G.
4. Microglia/neuron co-cultures
5. Interferon-γ treatment
6. Immunocytochemistry
7. Spine analysis
8. Calcium imaging
Protocol Validation
The iPSC-derived microglia were generated from seven iPSC lines over three different rounds of differentiation. Control iPSC lines ML27, ML56, ML292, and ML364 and schizophrenia iPSC lines ML40, ML141, and ML250 were utilized. Characterization of these iPSC lines have been described previously51. These iPSC-derived microglia were validated using ICC and qPCR. Microglia generated from the adapted protocol exhibited typical ramified microglial morphology (Figure 1C), and expressed microglial markers CD11c, TMEM119, and IBA1, as examined by immunocytochemistry (Figure 1D,E). Cells with nuclei expressing microglial markers CD11c, P2RY12, and IBA1 were quantified. CD11c, P2RY12, IBA1 and TMEM119 were present in 63%, 60%, 65%, and 44% of the cells respectively, which is consistent with data described in the original differentiation protocol paper49. These experiments were performed with iPSC lines ML27, ML40, ML141, and ML250. Expression of specific genes was examined using qPCR to confirm the expression of microglial genes AIF1, CX3CR1, ITGAM, ITGAX, P2RY12, and TMEM119 (Figure 1F). This data was obtained from iPSC-derived microglia from two lines and normalized to an iPSC line. The SYBR Green real-time PCR protocol was used.
Dendritic Spines
Cortical neurons and microglia in co-culture were visualized using confocal microscopy (Figure 2A). Dendritic spines were quantified in the co-cultured cortical neurons (Figure 2B). Co-cultures were analyzed to determine the proportion of microglia and cortical neurons by marker analysis using P2RY12 and MAP2 to identify microglia and neurons respectively. In these co-cultures, 32.5% of the cells were positive for P2RY12 and 37.7% of the cells were positive for MAP2. Cortical neurons co-cultured with microglia treated with IFN-γ exhibited no significant differences in spine count, spine length, and neurite length when compared to cortical neurons co-cultured with untreated microglia (Figure 2D). This data was collected from the four control iPSC lines ML27, ML56, ML292, ML364, with two separate wells per experimental condition and ten images obtained from each well.
Calcium Imaging
Neurons co-cultured with microglia were stained with calcium fluorescence indicator in order to examine differences in neuronal firing with stimulation from glutamate with and without IFN-γ induced microglial activation (Figure 2E). Cortical neurons co-cultured with microglia treated with IFN-γ showed significant reduction in fluorescence intensity after stimulation with glutamate compared to cortical neurons co-cultured with untreated microglia (Figure 2F). This data was collected for three healthy control iPSC lines ML27, ML56, and ML292, with two wells per experimental condition and five images obtained from each well.
Supplementary Figure 1 further validates antibodies and staining protocol.
Figure 1: Differentiation and validation of iPSC-derived microglia. (A) Schematic depiction of microglial differentiation from iPSCs through microglial maturity and co-culture with cortical neurons. (B) Representative image of microglial progenitor cells after re-plating following day 25 of differentiation at 10x magnification. (C) Representative image of microglia in monoculture at day 14 at 10x magnification. (D) Immunocytochemistry staining of CD11c, P2RY12, IBA1, and TMEM119 to confirm expression of microglial markers, shown at 20x magnification. (E) Percentage of cells positively stained for microglial markers CD11c, P2RY12, IBA1, and TMEM119. (F) qPCR validation showing microglia exhibiting microglial-signature genes including AIF1, CX3CR1, ITGAM, ITGAX, P2RY12, and TMEM119. (G) Schematic depicting cortical neuron differentiation from iPSCs. (H) Immunocytochemistry staining of CTIP2, CUX1, SATB2, and MAP2 to confirm generation of cortical neurons, shown at 63X magnification. Please click here to view a larger version of this figure.
Figure 2. Functional changes in microglia and neuron co-cultures with and without interferon-gamma treatment. (A) Representative image of microglia and cortical neuron co-culture, with neurons stained for MAP2, pre-synaptic marker bassoon and post-synaptic marker homer, and microglia stained for TMEM119. (B) Representative image of dendritic spines in microglia/neuron co-cultures, with and without IFN-γ treatment. Scale bar = 50 μm. (C) Percentage of cells positive for P2RY12 or MAP2 in the co-cultures (mean + SEM). (D) Cortical neurons co-cultured with microglia treated with IFN-γ showed no significant differences when compared to untreated microglia in terms of spine count (Mann-Whitney test, P > 0.05, mean + SEM), spine length (Mann-Whitney test, P > 0.05, mean + SEM), or neurite length (unpaired t test, P > 0.05, mean + SEM). (E) Representative images of cortical neurons co-cultured with microglia in the presence of the calcium indicator Fluo-4AM, before and after glutamate stimulation and with and without IFN-γ treatment. (F) Cortical neurons co-cultured in the presence of microglia treated with IFN-γ had significantly lower fluorescence intensity with glutamate stimulation when compared to neurons co-cultured with untreated microglia (Mann-Whitney test, P = 0.0003, mean + SEM). Please click here to view a larger version of this figure.
Protocol | Supplements used | Sorting stage | Length of Differentiation | Protein markers expiressed | Characterization | |||
Abud et al. | FGF, BMP4, Activin A, LiCl, FGF, VEGF, TPO, SCF, IL-3, IL-6, M-CSF, IL-34, TGFb1, insulin, CD200, CX3CL1 | At day 10, isolate CD34+ cells | 38 days | CD45, CX3CR1, ITGB5, MERTK, PROS1, TGFbR1, P2RY12, TREM2 | Cytospin/Giemsa staining, transcriptomic profiling, RNA seq, flow cytometry, RT-QPCR, cell type analysis, flow cytometry, motility assay, inflamation response assay, phagocytosis assay, transplantation | |||
Douvaras et al. | BMP4, FGF, SCF, VEGF, IL-3, TPO, M-CSF, Flt-3L, GM-CSF, IL-34 | At day 25, for CD14+/ CX3CR1+ cells | 40 days | CD11b, CD11c, CX3CR1, IBA1, P2RY12, TMEM119 | ICC, RT-QPCR, cell type analysis, flow cytometry, RNA seq, calcium assay, motility assay | |||
Haenseler et al. | BMP4, SCF, VEGF, M-CSF, IL-3, GM-CSF | None | 42 days | CD11b, CD14, CD45, IBA1, MERTK | ICC, RT-QPCR, cell type analysis, flow cytometry, motility assay, inflamation response assay | |||
Mcquade et al. | IL-34, TGF-β1, M-CSF, CLxCL1, CD200 | None | 38 days | P2RY12, TMEM119 | ICC, RNA seq, phagocytosis assay, transplantation assay | |||
Muffat et al. | M-CSF, IL-34 | None | 74 days | CD11B, IBA1, P2RY12 TMEM119 | ICC, RNA seq, flow cytometry, cell size comparison Endotoxin response, motility assay |
Table 1: Overview of current protocols for differentiation of iPSCs to microglial cells.
Day | Medium | Cytokines | Concentration |
0-3 | Stem Cell Medium | BMP-4 | 80ng/mL |
4-5 | Hematopoietic Medium | FGF | 25ng/mL |
SCF | 100ng/mL | ||
VEGF | 80ng/mL | ||
6-13 | Hematopoietic Medium | SCF | 50ng/mL |
IL-3 | 50ng/mL | ||
TPO | 5ng/mL | ||
M-SCF | 50ng/mL | ||
Flt3-Ligand | 50ng/mL | ||
14-25+ | Hematopoietic Medium | M-SCF | 50ng/mL |
Flt3-Ligand | 50ng/mL | ||
GM-SCF | 50ng/mL | ||
Adherent | RPMI 1640 | GM-SCF | 25ng/mL |
IL-34 | 100ng/mL |
Table 2: Overview of media used for microglial differentiation, listed with the concentration of cytokines used.
Protocol | Day 0-3 Medium | Feeding method | Sorting | Supplements |
Douvaras et al. | Custom medium; medium without Lithium Chloride, GABA, Pipecolic Acid, bFGF and TGFβ1 supplemented with 80ng/mL BMP4 | Every four days, cells pelleted and resuspended in fresh medium | Isolation of CD14+ or CD14+CX3CR1+ progenitors via FACS sorting | |
This protocol | iPSC medium supplemented with 80ng/mL BMP4 | Every four days fresh medium added on top of existing medium | None | Rock inhibitor (10μM) used after centrifugation |
Table 3: Brief overview of microglial differentiation protocol from Douvaras et al.49 and adaptations made in this study.
Protocol | Neural Maintenance Medium | Neural Induction Medium | Supplements | Notable Differences | ||
Shi et al. 201250 | N2/B27 medium. N2 medium: Basal medium with 1% N-2 supplement, 1% 200mM L-alanyl-L-glutamine dipeptide in 0.85% NaCl solution, 1% pen/strep, 5μg/mL insulin, 1mM ;-glutamine, 100μM non-essential amino acids, 100μM 2-mercaptoethanol. B27 medium: DMEM/F12 supplemented with 2% B-27 supplement, 200mM L-glutamine, 1% pen/strep. | N2/B27 medium supplemented with 10μM SB431542 and 100ng/mL noggin OR 10μM SB431542 and 1μM dorsomorphin. | 20ng/mL FGF2 upon appearance of rosettes | Use of Insulin, NEAA, 2-mercaptoethanol | ||
This protocol | N2/B27 medium. N2 medium: Basal medium with 1% N-2 supplement, 1% 200mM L-alanyl-L-glutamine dipeptide in 0.85% NaCl solution, 1% pen/strep. B27 medium: DMEM/F12 supplemented with 2% B-27 supplement, 1% 200mM L-alanyl-L-glutamine dipeptide in 0.85% NaCl solution, 1% pen/strep. | N2/B27 medium supplemented with 10μM SB431542, 1μM dorsomorphin, 100nM LDN193189. | Use of 200mM L-alanyl-L-glutamine dipeptide in 0.85% NaCl solution in B27 medium, use of 100nM LDN193189 in Neural Induction Medium |
Table 4: Brief overview of neuronal differentiation protocol from Shi et al.50 and adaptations made in this study.
Supplementary Figure 1: (A) Control iPSCs stained Microglia specific antibodies CD11c, P2RY12 and (B) TMEM119 and Iba1 to ensure these antibodies do not stain non-microglia cells. Control iPSC line did not exhibit any positive staining for these markers. (C) Co-cultures analyzed by cell type visible by specific line. Co-cultures were stained with a neuronal marker MAP2 or microglial marker P2RY12. Please click here to download this File.
Supplementary Table 1: List of primary antibodies used in this protocol and their optimal dilutions. Please click here to download this Table.
Supplementary Table 2: List of primers used for RT PCR experiments with forward and reverse sequences. Please click here to download this Table.
The development of differentiation methods along different trajectories for pluripotent stem cells have opened many avenues for the investigation of brain function and disease processes53,54,55. Initial studies had focused on the development of specific neuronal cell types hypothesized to be important in specific brain disorders56,57. Recently, brain organoids have also provided new ways to study disease biology using patient-specific three-dimensional models51,58. The two-dimensional and three-dimensional cellular models provide specific advantages when trying to tackle different scientific questions59. While the early studies focused on cells along the neuronal lineage, recent developments now enable generation of other cell types in the brain, i.e. microglial cells and brain microvascular endothelial cells60,61. While studying the development of these cell types have provided valuable information and knowledge, it is important understand the interplay between these cell types to fully understand the role of neuroimmune and neurovascular interactions on brain function and development. This paper provides a detailed protocol on generating and co-culturing cortical neurons and microglia derived from the same iPSC line in order to develop personalized in vitro co-culture models to study the effects of different cell types on neuronal biology. By optimizing a method to efficiently differentiate microglia from iPSCs, we are now poised to examine disease-specific phenotypes using microglia and cortical neurons differentiated from iPSCs from disease subjects. Furthermore, this experimental approach allows for cross-culturing of microglia and neurons from control and disease subjects that can be leveraged to delineate specific contributions of microglia and neurons in disease-related phenotypes.
A number of rodent studies have examined co-cultures of microglia and neurons. A tri-culture with astrocytes, microglia and primary neurons reported significant improvement in neuronal health and reduced caspase 3/7 activity in the co-cultures62. An additional co-culture protocol for primary cerebellar granule neurons and primary cortical microglia from mice revealed that the use of co-culture methodology helps prevent the negative effect of toxicants on neuronal function and survival by mediating the release of cytokines63. These findings suggest that it is important to study co-cultures of different cell types to accurately depict relevant neurobiology and highlight the need for these experiments to be undertaken using human cells to understand the role neuro-immune interactions in psychiatric disease biology.
Only one previous study has investigated co-cultures of human iPSC-derived microglia or precursor macrophages with cortical neurons48. Co-cultures of embryonic MYB-independent iPSC-derived macrophages with iPSC-derived cortical neurons found that co-culture with microglia led to downregulation in pathogen-response pathways, upregulation in homeostatic function pathways, and promoted an anti-inflammatory and pro-remodeling cytokine response than corresponding monocultures, further suggesting the important crosstalk between microglia with neurons that can be recapitulated in in vitro co-culture models48. This study used iPSC-derived neurons to help mature MYB-independent iPSC-derived macrophages into microglial cells whereas the current protocol utilizes iPSC-derived microglia that had been differentiated to maturity separately. Given the significant interplay between these cell types, using a methodology where the maturation of microglia is dependent on the health of the neurons may present challenges and confounding factors when studying disease-related phenotypes.
There are three critical steps in this protocol that should be followed to ensure success. First, spinning cells for medium change for the floating microglial cultures should be kept to a minimum, which is why it is outlined that media should be added on top of the existing media during this stage instead of exchanging media. This step helps prevent loss and death of differentiating microglial cells. Second, when plating cortical neurons onto microglial cultures, it is crucial to add laminin to the medium in order to ensure that neurons will adhere to the plate. Neurons have a tendency to lift off of the plate and adding laminin helps prevent this. Third, for calcium imaging experiments, ensure that the confocal microscope used is equipped with an incubation chamber for live-cell imaging. This allows the cells to remain healthy throughout the experiment and prevents variability in data due to the timing of when the imaging data was collected.
This protocol adapted an aspect of the Fossati group protocol49 that had led to significant loss and death of differentiating microglial cells. Rather than collecting the supernatant and floating cell mixture and pelleting the cells every four days as originally described, fresh media was added on top to prevent cell loss and death in the centrifugation process. Cells were grown in 75mm flasks rather than in 6-well plates in order to maximize volume of media that could be added during this stage.
This protocol also removed a sorting step described in the Fossatti group protocol49. The sorting step resulted in a much lower cellular yield and high cell death in our hands. Hence, floating cells at day 25+ were plated without using this sorting step. Cells differentiated using this modified approach had ramified morphology characteristic of microglial cells, expressed microglial genes and showed robust staining of microglial markers. The percentage of cells expressing microglial markers is similar to the data in the original protocol49, suggesting that the purity of these cells is not significantly affected by removal of this sorting step.
Though the specific protocols for generating co-culturing iPSC-derived microglia and cortical neurons involved adapting from two well-established protocols, the microglia generated with this adapted approach have not been as extensively characterized as the original protocol. The downside of this protocol relates to length and cost of differentiation. The differentiation process takes at least 40 days and requires the use of a number of expensive reagents, especially the cytokines. Also, in this report, IFN-γ was used as an activator of microglia, but it should also be noted that this pro-inflammatory cytokine can elicit direct changes in cortical neurons as well64 and there is a need to undertake further studies to delineate the effect of cytokines on microglia and neurons.
These experiments provide proof-of-concept approaches to examine the effect of microglia on neuronal biology, which sets the stage for interesting explorations of various facets of neuro-immune interactions in the context of disease biology using microglia and neurons generated from patients with specific neurodevelopmental and neuropsychiatric disorders. The ability to cross-culture microglia and neurons from healthy subjects and disease subjects provide interesting avenues to dissect the specific roles of these cell types in the manifestation of disease-related phenotypes. Furthermore, co-culture models can be expanded to include astrocytes, oligodendrocytes and endothelial cells in order to develop novel in vitro models that reflect the different niches found in the brain.
The authors have nothing to disclose.
This work was supported by a National Institute of Mental Health Biobehavioral Research Awards for Innovative New Scientists (BRAINS) Award R01MH113858 (to R.K.), National Institute of Mental Health Clinical Scientist Development Award K08MH086846 (to R.K.), the Doris Duke Charitable Foundation Clinical Scientist Development Award (to R.K.), the Ryan Licht Sang Bipolar Foundation (to R.K.), the Jeanne Marie Lee-Osterhaus Family Foundation and the NARSAD Young Investigator Award from the Brain & Behavior Research Foundation (to A.K.), the Phyllis & Jerome Lyle Rappaport Foundation (to R.K.), the Harvard Stem Cell Institute (to R.K.) and by Steve Willis and Elissa Freud (to R.K.). We would like to thank Dr. Bruce M. Cohen and Dr. Donna McPhie from Harvard Medical School and McLean Hospital for providing us with the fibroblasts used in the study.
Accutase | Sigma-Aldrich | A6964 | |
B-27 supplement | Gibco | 17504044 | |
b-FGF | Peprotech | 100-18B | |
BMP-4 | Peprotech | 120-05ET | |
Brainphys | StemCell Technologies | 5790 | |
CD11C antibody | Biolegend | 337207 | Dilution 1:200 |
Costar Flat Bottom Cell Culture Plates | Corning | 07-200-83 | |
Ctip2 antibody | Abcam | ab18465 | |
CUTL1 monoclonal antibody | Abnova | H00001523-M01 | |
DMEM/F-12, no phenol red | Gibco | 21041025 | |
dorsomorphin | Sigma-Aldrich | P5499 | |
DPBS, no calcium, no magnesium | Gibco | 14190144 | |
Dulbecco's Modified Eagle Medium (DMEM) | Sigma-Aldrich | D6421 | |
EasYFlask Cell Culture Flasks | Nunc | 156499 | |
Fisherbrand Cell Lifters | Fisher Scientific | 08-100-240 | |
Flt3-Ligand | Peprotech | 300-19 | |
Fluo4-AM | Life Technologies | F-14201 | |
Geltrex LDEV Free RGF BME 1 ML | ThermoFisher Scientific | A1413201 | |
Glutamax | ThermoFisher Scientific | 35050061 | |
GM-CSF | Peprotech | 300-03 | |
Goat Anti Chicken- IgG H&L (Alexa Fluor 488) | Abcam | ab150169 | Dilution 1:1000 |
Goat Anti mouse- IgG H&L (Alexa Fluor 568) | Invitrogen | A-11004 | Dilution 1:1000 |
Goat Anti Rat- IgG H&L (Alexa Fluor 405) | Abcam | ab175670 | Dilution 1:1000 |
Goat Anti-Guinea pig IgG H&L (Alexa Fluor 405) | Abcam | ab175678 | Dilution 1:1000 |
Goat Serum | Sigma-Aldrich | G9023 | |
HBSS | Invitrogen | 14170120 | |
IBA1 antibody | Abcam | ab5076 | Dilution 1:500 |
IL-34 | Peprotech | 200-34 | |
INF-y | Peprotech | 300-02 | |
KiCqStart SYBR Green Primers | Sigma-Aldrich | KSPQ12012 | |
Laminin | Sigma-Aldrich | L2020 | |
LDN193189 | Sigma-Aldrich | SML0599 | |
Live Cell Imaging Solution | Invitrogen | A14291DJ | |
MAP2 antibody | Synaptic Systems | 188 004 | |
M-CSF | Peprotech | 300-25 | |
N-2 supplement | Gibco | 17502001 | |
Neurobasal medium | Life Technologies | 21103049 | |
NutriStem hPSC XF Medium | Biological Industries | 01-0005 | |
P2RY12 antibody | Biolegend | 848002 | |
Paraformaldehyde 16% | Fisher Scientific | 50-980-488 | |
Penicillin-streptomycin | Gibco | 15140122 | |
Poly-L-Orthinine | Sigma-Aldrich | P3655 | |
SATB2 antibody | Abcam | ab51502 | |
SB431542 | Sigma-Aldrich | S4317 | |
SCF | Stemcell Technologies | 78062 | |
SensoPlate 24-Well Glass-Bottom Plate | Greiner-Bio | 662892 | |
StemPro-34 SFM (1X) | Gibco | 10639011 | |
TMEM119 antibody | Abcam | ab185333 | Dilution 1:1000 |
TPO | Peprotech | 300-18 | |
Triton-X | Sigma-Aldrich | 9002-93-1 | |
VEGF | Peprotech | 100-20 | |
Versene | ThermoFisher Scientific | 15040066 | |
Y-27632 dihydrochloride (ROCK inhibitor) | Tocris | 1254 |
.