Science Education
>

Osteopathic Manipulative Treatment as a Useful Adjunctive Tool for Pneumonia

Instructor Prep
concepts
Student Protocol
JoVE 杂志
医学
This content is Free Access.
JoVE 杂志 医学
Osteopathic Manipulative Treatment as a Useful Adjunctive Tool for Pneumonia

The five OMT’s described here are a small representation of the osteopathic procedures that can be utilized for a patient with pneumonia when indicated. These techniques focus on improving thoracic cage compliance, improving lymphatic and circulatory flow, and balancing autonomic tone. These techniques are similar to the techniques utilized in the three OMT studies demonstrating efficacy in treating patients with pneumonia.

1. Muscle Energy to Rib 1 – Exhalation Dysfunction 24,25

  1. Assess rib 1 motion by placing a first digit on the posterior aspect of the patient’s first rib, second digit on the supraclavicular portion of the first rib, and third digit on the infraclavicular portion of the first rib. Palpate for restricted motion or tissue congestion.
  2. Patient lies supine on table. Stand on the opposite side of the rib dysfunction (for example, if it is a left Rib 1 Exhalation Dysfunction, stand on the patient’s right side and vice versa).
  3. Reach the caudad hand under the patient and grasp the rib angle of the dysfunctional rib 1. Apply traction in an inferolateral direction.
  4. Place the dorsum of the patient’s left wrist on forehead. Then, place a hand over patient’s wrist.
  5. Have the patient take a deep breath in while moving the rib inferiorly to engage the restrictive barrier.
  6. Have the patient hold his or her breath for 3-5 seconds while attempting to lift their head against isometric resistance provided by a hand.
  7. Repeat steps 1.5-1.6 three to five times while re-engaging a new restrictive barrier after each repetition.
  8. Following the last repetition, a final, passive stretch is performed further into the restrictive barrier.
  9. Re-assess rib 1 motion and check for signs of improvement.

2. Muscle Energy to Rib 1 – Inhalation Dysfunction 24,25

  1. Sit at the head of the table while the patient lies supine.
  2. Assess for dysfunction using digital palpation of rib 1. Place a thumb on the posterior aspect of the rib, second digit on the supraclavicular portion, and third digit on the infraclavicular region. Feel for restricted motion or local tissue congestion.
  3. Monitor the head of the dysfunctional rib in the supraclavicular fossa with a thumb.
  4. Flex patient’s head forward with the opposite hand until motion is felt at rib 1 in order to relieve the tension of the anterior scalene muscles.
  5. Instruct the patient to inhale and exhale deeply. As the patient exhales, move rib 1 inferiorly into the restrictive barrier. Instruct the patient to hold his/her breath in exhalation for 3-5 seconds.
  6. While the patient holds his/her breath in exhalation, instruct patient to push his/her head backwards against isometric resistance. This should last for 3-5 seconds while the patient is holding his/her breath.
  7. When the patient inhales, resist the natural tendency of the rib to move superiorly with inhalation.
  8. Repeat steps 2.5-2.7 three to five times, while re-engaging a new restrictive barrier with each repetition. After the final repetition, a passive stretch is performed further into the restrictive barrier.
  9. Re-asses rib motion to evaluate for any improvement.

3. Doming the Thoracic Diaphragm 24,25

  1. Assess thoracic cage motion bilaterally by palpating the rib cage while the patient inhales and exhales.
  2. Patient lies supine on the table. Stand on either side of patient. Thumb tips should be placed inferolateral to the xiphoid process and rest along the anterolateral costal margin below rib 7, which corresponds to muscular attachments of the respiratory diaphragm. The remaining digits should rest along the inferolateral border of ribs 8-10.
  3. Instruct the patient to “take a deep breath and then breathe all the way out.” As the patient exhales, follow the diaphragm by pressing thumbs posterior towards the table.
  4. Hold this point on the diaphragm as the patient takes the next deep inhalation. During the next exhalation, a further cephalad motion of the diaphragm is recommended (within a reasonable means and not providing any excessive discomfort to the patient). Continue to monitor the superior movement of the diaphragm.
  5. Repeat steps 3.3-3.4 for three to five respiratory cycles, or until the diaphragm domes easily at the end of exhalation.
  6. Re-asses by monitoring the diaphragm for improvement in excursion.

4. Seated Rib Raising 24,25

  1. Assess respiratory motion by palpating the rib cage. In particular, assess specific ribs for individual restrictions that impede the motion of the entire thoracic cage.
  2. Begin by having patient seated. Stand facing the patient with one foot behind the other.
  3. Instruct patient to cross his or her arms and rest their elbows on your shoulder. Patient may rest his/her head on his/her arms.
  4. Reach underneath the arms of the patient. Position finger pads near the costotransverse articulation, at the level of ribs 2-6. The finger pads are used as a fulcrum for extension of the patient’s spine.
  5. Lean weight onto the back foot and draw patient forward, providing an anterior-lateral traction of the rib angles. Also, extend the patient’s spine by shifting center of gravity posteriorly, thereby stretching the intercostal spaces and engaging the restrictive barrier.
  6. Hold this position for one second, and then release by allowing your weight to transfer forward to the more anterior foot and the patient to spring back to a more upright position.
  7. Move finger pads down one rib level and repeat steps 4.5-4.6. Continue this step-by-step down the rib levels until the rib levels are out of reach (typically around ribs 6-8).
  8. Reverse the procedure by working back up the rib cage until reaching rib 2.
  9. Determine success of treatment by reassessing rib motion of previously restricted rib levels.

5. Thoracic Pump with Respiratory Assist 24,25

  1. Assess thoracic cage motion bilaterally by palpating the rib cage while the patient inhales and exhales.
  2. The patient is positioned supine on table, while the physician stand at the head of the table. The table height should be adjusted to a comfortable height where the hands can fully extend onto patient’s pectoral region.
  3. Place hands over the patient’s pectoral region, with heels of hands just distal to clavicles and thumbs at approximately 45 degrees to sternum.
  4. Instruct patient to inhale and exhale deeply. Provide a compressive force downward onto the chest cage. Then, oscillate the degree of compression to produce a pump motion. Continue for approximately one minute or until adequate time passes for proper lymph flow.
  5. Respiratory assist is initiated by instructing the patient to inhale deeply and then exhale deeply. During the exhalation phase, follow the chest wall down until exhalation is complete. At the end of exhalation, hold chest wall in place and provide resistance while patient begins inhalation. Follow this step (step 2d) for several cycles of inhalation/expiration (2-6 cycles).
  6. During the final inhalation phase, right before the patient has completed a full deep inhalation, rapidly remove hands from patient’s chest to allow for a sudden influx of air into the patient’s chest.
  7. Re-asses for improvements by palpating thoracic motion.

Osteopathic Manipulative Treatment as a Useful Adjunctive Tool for Pneumonia

Learning Objectives

First, Muscle Energy Technique targets the Golgi tendon organs, which are stretch receptors located in skeletal muscle. Upon contraction, Golgi tendon organs are stretched, which activates afferent sensory type Ib nerves transmitting to the spinal cord. In the central nervous system, type Ib nerves synapse upon inhibitory motor neurons, which then provide inhibitory impulses to alpha motor neurons targeting the homonymous muscle group. The end result is relaxation of the initial and synergistic muscles, as well as contraction of antagonistic muscles. This effect is referred to as the Golgi tendon reflex or Inverse Myostatic Reflex. In the application of Muscle Energy Technique to the rib cage, muscles involved in breathing are engaged in isometric resistance. In the case of Rib 1, rib motion can be restricted by pathology related to the scalene muscles. By improving somatic dysfunctions in this respiratory muscle set, Rib 1 moves with greater ease during inspiration and expiration. Treatments that assist thoracic cage motion reduce the impedance of lymphatic flow by respiratory structures, which are located in the thoracic inlet/outlet area. Myofascial restrictions in clavicular region, such as scalene hypertrophy or spasm, can impede the terminal drainage of lymphatic vessels en route to the subclavian veins. Moreover, increased rib cage excursion improves pressure gradients, which further promotes lymph flow.

Second, Doming of the Thoracic Diaphragm Technique involves manipulation of the thoracic diaphragm, which is a principal muscle involved in breathing, blood circulation, lymphatic flow, and other key elements22. This technique involves “doming” the muscle to relieve hypertonicity associated with a flattened or dysfunctional state. Doming refers to the method of applying pressure and stretching the muscle in order to return it to a more normal rounded shape; thus, decreasing it’s hypertonicity. This technique indirectly engages the inferior surface of the diaphragm and increases its excursion during expiration26. Furthermore, the diaphragm assists lymphatic flow by exerting a pump-like propulsion effect on fluid within vessels. Thus, a hindrance in the diaphragm’s physical pumping force will limit lymphatic return to circulation. For instance, a hypertonic diaphragm can hamper the lymphatic flow from the cisterna chili, which is a major vessel that lies behind diaphragmatic attachments. The doming of the thoracic diaphragm technique increases excursion, and consequently there will be both optimal lymph flow and return pressure gradients to normal.

Third, Rib Raising Technique augments lymphatic flow by improving respiratory excursion and reducing sympathetic outflow. Excessive autonomic innervation reduces chest wall mobility by generating hypertonicity of the rib cage musculature and increasing intra-abdominal pressure27. Since lymphatic flow is dependent on pressure gradients generated by adequate respiratory excursion, excessive sympathetic tone can be a hindrance to lymphatic drainage28. Accordingly, this technique addresses this pathology by focusing on sympathetic chain ganglia adjacent to Ribs 2-626. Furthermore, in a study comparing the effect of Rib Raising to a light touch control group, there was a significant decrease in the levels of α-amylase, an established physiological biomarker of sympathetic activity29.

Fourth, Thoracic Pump Technique increases the flow of lymph and other immune cells through a rhythmic, phasic compression of lymphatic vessel walls and regional lymph tissue30, especially the thoracic duct. This technique provides a mechanical force to supplement lymphatic drainage into venous circulation, which is primarily useful in states of obstructed or limited drainage of the extracellular compartment. The oscillatory compressive action produces alternating pressure gradients, which enable lymph to flow through its natural channels in a superior direction.

Figure 1
Figure 1. This figure illustrates various components of pneumonia treatment and their efficacy, as supported by current literature4.

Figure 2
Figure 2. This figure illustrates the step-by-step approach toward patient care utilized by osteopathic physicians.

Figure 3
Figure 3. This figure demonstrates significant findings in RCTs comparing length of stay.

Figure 4
Figure 4. This figure demonstrates significant findings in RCTs comparing duration of antibiotics.

Figure 5
Figure 5. This figure demonstrates the Golgi tendon reflex. When stretched, the Golgi tendon organ is activated and provides feedback to the central nervous system that results in inhibitory impulses being sent to the homonymous muscle.

Figure 6
Figure 6. This figure demonstrates the positional set up for Muscle Energy Technique applied to an exhalation dysfunction of Rib 1.

Figure 7
Figure 7. This figure illustrates placement of the thumbs for Doming the Diaphragm Technique, which normalizes the shape of the diaphragm to alleviate abnormal respiratory motions.

Figure 8
Figure 8. This figure demonstrates the positional set up for Doming The Diaphragm technique.

Figure 9
Figure 9. This figure illustrates the Rib Raising Technique, which improves respiratory expansion and alleviates hypertonicity caused by excessive innervation from the sympathetic chain ganglia.

Figure 10
Figure 10. This figure demonstrates the positional set up for Rib Raising Technique.

Figure 11
Figure 11. This figure illustrates hand positioning, relative to the lymphatic system, prior to providing downward oscillatory compression in Thoracic Pump Technique.

Figure 12
Figure 12. This figure demonstrates the positional set up for Thoracic Pump Technique.

List of Materials

There are no materials.

Lab Prep

Pneumonia, the inflammatory state of lung tissue primarily due to microbial infection, claimed 52,306 lives in the United States in 20071 and resulted in the hospitalization of 1.1 million patients2. With an average length of in-patient hospital stay of five days2, pneumonia and influenza comprise significant financial burden costing the United States $40.2 billion in 20053. Under the current Infectious Disease Society of America/American Thoracic Society guidelines, standard-of-care recommendations include the rapid administration of an appropriate antibiotic regiment, fluid replacement, and ventilation (if necessary). Non-standard therapies include the use of corticosteroids and statins; however, these therapies lack conclusive supporting evidence4. (Figure 1)

Osteopathic Manipulative Treatment (OMT) is a cost-effective adjunctive treatment of pneumonia that has been shown to reduce patients’ length of hospital stay, duration of intravenous antibiotics, and incidence of respiratory failure or death when compared to subjects who received conventional care alone5. The use of manual manipulation techniques for pneumonia was first recorded as early as the Spanish influenza pandemic of 1918, when patients treated with standard medical care had an estimated mortality rate of 33%, compared to a 10% mortality rate in patients treated by osteopathic physicians6. When applied to the management of pneumonia, manual manipulation techniques bolster lymphatic flow, respiratory function, and immunological defense by targeting anatomical structures involved in the these systems7,8, 9, 10.

The objective of this review video-article is three-fold: a) summarize the findings of randomized controlled studies on the efficacy of OMT in adult patients with diagnosed pneumonia, b) demonstrate established protocols utilized by osteopathic physicians treating pneumonia, c) elucidate the physiological mechanisms behind manual manipulation of the respiratory and lymphatic systems. Specifically, we will discuss and demonstrate four routine techniques that address autonomics, lymph drainage, and rib cage mobility: 1) Rib Raising, 2) Thoracic Pump, 3) Doming of the Thoracic Diaphragm, and 4) Muscle Energy for Rib 1.5,11

Pneumonia, the inflammatory state of lung tissue primarily due to microbial infection, claimed 52,306 lives in the United States in 20071 and resulted in the hospitalization of 1.1 million patients2. With an average length of in-patient hospital stay of five days2, pneumonia and influenza comprise significant financial burden costing the United States $40.2 billion in 20053. Under the current Infectious Disease Society of America/American Thoracic Society guidelines, standard-of-care recommendations include the rapid administration of an appropriate antibiotic regiment, fluid replacement, and ventilation (if necessary). Non-standard therapies include the use of corticosteroids and statins; however, these therapies lack conclusive supporting evidence4. (Figure 1)

Osteopathic Manipulative Treatment (OMT) is a cost-effective adjunctive treatment of pneumonia that has been shown to reduce patients’ length of hospital stay, duration of intravenous antibiotics, and incidence of respiratory failure or death when compared to subjects who received conventional care alone5. The use of manual manipulation techniques for pneumonia was first recorded as early as the Spanish influenza pandemic of 1918, when patients treated with standard medical care had an estimated mortality rate of 33%, compared to a 10% mortality rate in patients treated by osteopathic physicians6. When applied to the management of pneumonia, manual manipulation techniques bolster lymphatic flow, respiratory function, and immunological defense by targeting anatomical structures involved in the these systems7,8, 9, 10.

The objective of this review video-article is three-fold: a) summarize the findings of randomized controlled studies on the efficacy of OMT in adult patients with diagnosed pneumonia, b) demonstrate established protocols utilized by osteopathic physicians treating pneumonia, c) elucidate the physiological mechanisms behind manual manipulation of the respiratory and lymphatic systems. Specifically, we will discuss and demonstrate four routine techniques that address autonomics, lymph drainage, and rib cage mobility: 1) Rib Raising, 2) Thoracic Pump, 3) Doming of the Thoracic Diaphragm, and 4) Muscle Energy for Rib 1.5,11

Procedure

Pneumonia, the inflammatory state of lung tissue primarily due to microbial infection, claimed 52,306 lives in the United States in 20071 and resulted in the hospitalization of 1.1 million patients2. With an average length of in-patient hospital stay of five days2, pneumonia and influenza comprise significant financial burden costing the United States $40.2 billion in 20053. Under the current Infectious Disease Society of America/American Thoracic Society guidelines, standard-of-care recommendations include the rapid administration of an appropriate antibiotic regiment, fluid replacement, and ventilation (if necessary). Non-standard therapies include the use of corticosteroids and statins; however, these therapies lack conclusive supporting evidence4. (Figure 1)

Osteopathic Manipulative Treatment (OMT) is a cost-effective adjunctive treatment of pneumonia that has been shown to reduce patients’ length of hospital stay, duration of intravenous antibiotics, and incidence of respiratory failure or death when compared to subjects who received conventional care alone5. The use of manual manipulation techniques for pneumonia was first recorded as early as the Spanish influenza pandemic of 1918, when patients treated with standard medical care had an estimated mortality rate of 33%, compared to a 10% mortality rate in patients treated by osteopathic physicians6. When applied to the management of pneumonia, manual manipulation techniques bolster lymphatic flow, respiratory function, and immunological defense by targeting anatomical structures involved in the these systems7,8, 9, 10.

The objective of this review video-article is three-fold: a) summarize the findings of randomized controlled studies on the efficacy of OMT in adult patients with diagnosed pneumonia, b) demonstrate established protocols utilized by osteopathic physicians treating pneumonia, c) elucidate the physiological mechanisms behind manual manipulation of the respiratory and lymphatic systems. Specifically, we will discuss and demonstrate four routine techniques that address autonomics, lymph drainage, and rib cage mobility: 1) Rib Raising, 2) Thoracic Pump, 3) Doming of the Thoracic Diaphragm, and 4) Muscle Energy for Rib 1.5,11

Tags