Here, we present a concise protocol for creating a preterm rat model, facilitating research on early postnatal pain management. The method involves performing a cesarean section three days before the expected birth, extracting preterm rat pups via hysterectomy, and integrating them with the biological offspring of a surrogate dam.
This research delves into the consequences of consistent pinprick stimulation on preterm offspring to ascertain its long-term implications for pain sensitivity. The primary objective of this protocol was to investigate the impact of neonatal pinprick stimuli on the pain threshold in the later stages of life using a preterm rat model. By establishing this model, we aim to advance the research on understanding and managing early postnatal pain associated with prematurity. The findings of this study indicate that while the baseline thresholds to mechanical stimuli remained unaffected, there was a notable increase in mechanical hypersensitivity following complete Freund’s adjuvant (CFA) injection in adult rats. Interestingly, compared with male rats, female rats demonstrated heightened inflammatory hypersensitivity. Notably, maternal behavior, the weight of the litters, and the growth trajectory of the offspring remained unchanged by the stimulation. The manifestation of altered nociceptive responses in adulthood after neonatal painful stimuli could be indicative of changes in sensory processing and the functioning of glucocorticoid receptors. However, further research is needed to understand the underlying mechanisms involved and to develop interventions for the consequences of prematurity and neonatal pain in adults.
During the neonatal period, nociceptive pathways undergo significant structural and functional maturation, and the presence of tissue damage and associated pain has profound implications for the development of somatosensory processing1.
Utilizing animal models allows for the controlled experimental manipulation of nonhuman animals, enabling a deeper comprehension of the consequences of neonatal pain on behavior later in life while mitigating potential confounding variables2,3. A commonly observed outcome is the influence of neonatal pain on heightened pain sensitivity in adulthood2,4,5. In the neonatal intensive care unit (NICU), neonatal pain is a highly prevalent source of stress, with preterm infants typically undergoing a median of 10 invasive procedures per day6. Premature neonates in the NICU encounter a range of stressors, encompassing pain, limited maternal contact, auditory stimuli, and excessive lighting7,8,9.
The utilization of animal models is essential for advancing our understanding of the underlying mechanisms involved in these processes and facilitating new advances in this area. In particular, employing preterm animal models in studies can greatly contribute to expanding the body of knowledge on premature infants and provide valuable insights into pain management interventions for preterm neonates10.
Currently, there are a limited number of rodent models that specifically address prematurity, with the majority of these studies primarily investigating the effects of prematurity on the brain11, lung development12, necrotizing enterocolitis13, or immune nutritional studies14. However, none of these models examine the maturation of the pain system, which is particularly vulnerable in cases of prematurity.
Premature birth and its consequences for early postnatal pain management remain crucial areas of study. Therefore, the present work aimed to contribute to the literature by establishing a preterm rat model. This model provides insights into the impact of neonatal pinprick stimuli on pain thresholds during later stages of life, enhancing our understanding of prematurity-related pain.
In this investigation, we observed that maternal and nonmaternal behaviors of mothers remained unaffected by neonatal pinprick experimentation. This trend extended to nonmaternal behavior as well. Furthermore, the weight gain of preterm litters during the pinprick stimulus period was not significantly different between the control and pinprick groups. Paw withdrawal threshold analyses revealed a noteworthy reduction in both male and female pups from the pinprick and CFA groups compared to those from the control groups. P…
The authors have nothing to disclose.
This work was supported by the Federal University of Alfenas – UNIFAL-MG and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES Fellowship, Laura Pereira Generoso; Natalie Lange Candido and Maria Gabriela Maziero Capello) – Finance Code 001.
0.9% NaCl solution | Concare, Brazil | ||
Acrylic cages (42 cm × 24 cm × 15 cm) with wire grid floors | Insight Equipamentos, Brazil | ||
Complete Freund's Adjuvant (CFA) | Sigma Aldrich, Brazil | ||
Electronic von Frey, | Insight Equipamentos, Brazil | ||
H2O2 (hydrogen peroxide) | ACS Cientifica, Brazil | ||
Infrared lighting | Carci, Brazil | ||
Isoflurane (2%) | Cristália, Brazil | ||
Upright microscope | Nikon, Brazil | ECLIPSE Ei | Microscope with 10x and 40x objective lenses |
.