이 프로토콜은 STED(Stimulated Emission Depletion) 현미경을 사용한 미토콘드리아 초미세 구조 시각화 및 분석을 위해 배양된 SH-SY5Y 세포 및 일차 쥐 해마 뉴런의 증식, 분화 및 염색을 위한 워크플로우를 제시합니다.
미토콘드리아는 에너지 생산, Ca2+ 항상성 조절, 지질 생합성, 활성 산소종(ROS) 생성 등 세포에서 많은 중요한 역할을 합니다. 이러한 미토콘드리아 매개 과정은 뉴런에서 특화된 역할을 수행하며, 이러한 세포의 높은 에너지 수요를 충족시키기 위해 호기성 대사를 조정하고, Ca2+ 신호를 조절하고, 축삭 성장 및 재생을 위한 지질을 제공하고, 뉴런 발달 및 기능을 위해 ROS 생산을 조정합니다. 따라서 미토콘드리아 기능 장애는 신경 퇴행성 질환의 핵심 동인입니다. 미토콘드리아의 구조와 기능은 불가분의 관계에 있습니다. 크리스타(cristae)라고 불리는 구조적 인폴드가 있는 형태학적으로 복잡한 내막에는 미토콘드리아의 시그니처 프로세스를 수행하는 많은 분자 시스템이 있습니다. 내막의 구조적 특징은 초구조적이기 때문에 기존의 회절 제한 분해능 현미경으로 시각화하기에는 너무 작습니다. 따라서 미토콘드리아 초미세 구조에 대한 대부분의 통찰력은 고정 샘플의 전자 현미경에서 비롯되었습니다. 그러나 초고해상도 형광 현미경 검사의 새로운 기술은 이제 수십 나노미터의 해상도를 제공하여 살아있는 세포의 초구조적 특징을 시각화할 수 있습니다. 따라서 초고해상도 이미징은 미토콘드리아 구조, 나노 단위 단백질 분포 및 크리스타 역학의 미세한 세부 사항을 직접 이미지화할 수 있는 전례 없는 기능을 제공하여 미토콘드리아를 인간의 건강 및 질병과 연결하는 근본적이고 새로운 통찰력을 제공합니다. 이 프로토콜은 STED(Stimulated Emission Depletion) 초고해상도 현미경을 사용하여 살아있는 인간 신경모세포종 세포와 1차 쥐 뉴런의 미토콘드리아 초구조를 시각화합니다. 이 절차는 (1) SH-SY5Y 세포주의 성장 및 분화, (2) 일차 쥐 해마 뉴런의 분리, 도금 및 성장, (3) 살아있는 STED 이미징을 위한 세포 염색 절차, (4) 참조용 STED 현미경을 사용한 살아있는 세포 STED 실험 절차, (5) 내막의 형태학적 특징을 측정하고 정량화하기 위한 예제를 사용한 분할 및 이미지 처리 지침의 5개 섹션으로 구성됩니다.
미토콘드리아는 내공생 기원의 진핵 세포 기관으로, 중간 대사 및 ATP 생산, 이온 항상성, 지질 생합성 및 프로그램된 세포 사멸(apoptosis)을 포함한 여러 주요 세포 과정을 조절하는 역할을 합니다. 이러한 소기관은 위상학적으로 복잡하며, 여러 개의 하위 구획(subcompartment)1을 형성하는 이중막 시스템을 포함한다(그림 1A). 외부 미토콘드리아 막(OMM)은 세포질과 인터페이스하고 직접적인 세포 기관 간 접촉을 설정합니다 2,3. 내부 미토콘드리아 막(IMM)은 ATP 합성 및 기타 에너지 필요 프로세스를 구동하기 위해 주로 전기막 전위(ΔΨm)로 저장된 이온 구배를 유지하는 에너지 보존 막입니다 4,5. IMM은 OMM에 밀접하게 압착되는 내경막(IBM)과 크리스타막(CM)에 의해 결합된 크리스타라고 하는 돌출된 구조로 더 세분화됩니다. 이 막은 크리스탈 내 공간(ICS)과 막간 공간(IMS)에서 가장 안쪽의 매트릭스 구획을 묘사합니다.
미토콘드리아는 다이나민슈퍼패밀리(dynamin superfamily)6의 기계효소(mechanoenzyme)에 의해 지배되는 지속적이고 균형 잡힌 핵분열과 융합 과정을 기반으로 하는 역동적인 형태를 가지고 있다. 융합은 망상망의 연결성과 형성을 증가시키는 반면, 핵분열은 미토콘드리아 단편화를 유발하고 미토파지에 의해 손상된 미토콘드리아를 제거할 수 있게 한다7. 미토콘드리아 형태는 조직 유형8 및 발달 단계9에 따라 다르며, 세포가 에너지 요구(energetic needs)10,11 및 스트레스 요인(stressor)12을 포함한 요인에 적응할 수 있도록 조절된다. 네트워크 형성 정도(상호 연결 대 단편화), 둘레, 면적, 부피, 길이(종횡비), 진원도 및 분지 정도와 같은 미토콘드리아의 표준 형태 측정 특징은 이러한 특징의 크기가 빛의 회절 한계(~200nm)보다 크기 때문에 표준 광학 현미경으로 측정하고 정량화할 수 있습니다13.
크리스타 아키텍처는 미토콘드리아의 내부 구조를 정의합니다(그림 1B). 크리스타 형태학의 다양성은 크게 편평형(lamellar 또는 discoidal) 또는 관형-소포형(tubular-vesicular14)으로 분류할 수 있다. 모든 크리스타는 ICS에서 IMS를 분리하고 CM(15)에서 IBM을 분리하는 역할을 할 수 있는 크리스타 접합(CJ)이라고 하는 관형 또는 슬롯형 구조를 통해 IBM에 부착됩니다. 크리스타 형태는 (1) CJ에 상주하고 IMM-OMM 접촉부 16을 안정화하는 미토콘드리아 접촉 부위 및 크리스타 조직 시스템(MICOS), (2) 크리스타 리모델링(17,18,19)을 조절하는 시신경 위축 1(OPA1) GTPase, (3) 크리스타 팁(CT)에서 안정화 올리고머 어셈블리를 형성하는F1F O ATP 합성효소를 포함하는 IMM의 주요 단백질 복합체에 의해 조절되며, 21. 또한 IMM은 고도로 구부러진 IMM22를 안정화하는 비이중층 인지질, 포스파티딜에탄올아민 및 카디올리핀이 풍부합니다. 크리스타는 또한 역동적이며, 다양한 조건하에서 형태학적 변화를 나타내는데, 예를 들어 상이한 신진대사 상태(23,24), 상이한 호흡기 기질(25), 기아 및 산화 스트레스(26,27), 세포사멸(apoptosis) 28,29, 노화(30) 하에서 나타난다. 최근에는 크리스타가 몇 초 단위의 시간 척도로 대대적인 리모델링 사건을 겪을 수 있다는 사실이 밝혀져 그 역동적인 성격을 강조하고 있다31. 개별 크리스타 내 구조물의 치수(예: CJ 너비, 크리스타 길이 및 너비) 및 개별 크리스타를 다른 구조물과 관련시키는 매개변수(예: OMM에 대한 크리스타 내 간격 및 크리스타 입사각)32를 포함하여 크리스타의 여러 기능을 정량화할 수 있습니다. 이러한 정량화 가능한 크리스타 매개변수는 기능과 직접적인 상관 관계를 보여줍니다. 예를 들어, 미토콘드리아 ATP 생산의 정도는 크리스타 밀도 또는 다른 특징(예: OMM 면적당 크리스타)으로 정규화된 크리스타 수로 정량화된 크리스토의 풍부도와 양의 관련이 있습니다.33,34,35. IMM 형태는 나노 크기의 특징에 의해 정의되기 때문에 미토콘드리아 초미세 구조로 구성되며, 이를 위해서는 광 회절 한계보다 더 큰 해상도를 제공하는 이미징 기술이 필요합니다. 이하에서 설명되는 바와 같이, 이러한 기술에는 전자 현미경 및 초고해상도 현미경(나노스코피)이 포함된다.
중추신경계(CNS)의 신경 세포와 신경교세포는 특히 미토콘드리아 기능에 의존합니다. 평균적으로 뇌는 전체 체중의 2%에 불과하지만 전체 체내 포도당의 25%를 이용하고 체내 산소 소비량의 20%를 차지하기 때문에 에너지 대사 장애에 취약하다36. 알츠하이머병(AD), 근위축성 측삭 경화증(ALS), 헌팅턴병(HD), 다발성 경화증(MS) 및 파킨슨병(PD)을 포함한 진행성 신경퇴행성 질환(ND)은 이러한 질병의 분자적 토대를 이해하는 것부터 잠재적인 치료 예방 및 개입을 모색하는 것까지 다양한 연구 노력을 통해 현재까지 가장 광범위하게 연구된 병리학 중 일부입니다. ND는 미토콘드리아 전자 수송 사슬(ETC)37에 의해 생성된 활성산소종(ROS)과 미토콘드리아 칼슘 처리(38) 및 미토콘드리아 지질 대사(39)의 변화로 인해 부분적으로 발생하는 산화 스트레스 증가와 관련이 있습니다. 이러한 생리학적 변화는 AD 40,41,42,43,44, ALS45,46, HD47,48,49, MS 50 및 PD 51,52,53과 관련된 미토콘드리아 형태학의 현저한 결함을 동반합니다 . 이러한 구조적 및 기능적 결함은 복잡한 인과 관계로 결합될 수 있습니다. 예를 들어, 크리스타 형태가 OXPHOS 효소54를 안정화시킨다는 점을 감안할 때, 미토콘드리아 ROS는 ETC에 의해 생성될 뿐만 아니라 ETC가 상주하는 인프라를 손상시키는 역할을 하여 산화 손상에 대한 감수성을 향상시키는 피드 포워드 ROS 회로를 촉진합니다. 또한, 크리스타 무질서는 미토콘드리아 DNA(mtDNA) 방출 및 자가면역, 대사 및 노화 관련 장애와 관련된 염증 경로와 같은 과정을 유발하는 것으로 나타났습니다55. 따라서 미토콘드리아 구조 분석은 ND와 그 분자 토대를 완전히 이해하는 데 중요합니다.
투과 전자 현미경, 전자 단층 촬영 및 극저온 전자 단층 촬영(cryo-ET), X선 단층 촬영, 특히 극저온 소프트 X선 단층 촬영을 포함한 널리 사용되는 크리스타 관찰 방법은 중요한 발견을 밝혀냈으며 다양한 시료 유형(56,57,58,59,60)을 이용했다. 최근 소기관 미세구조를 더 잘 관찰할 수 있는 발전이 있었음에도 불구하고, 이러한 방법은 여전히 샘플 고정이 필요하기 때문에 크리스타의 실시간 역학을 직접 캡처할 수 없다는 주의 사항이 있습니다. 특히 구조화 조명 현미경(SIM), 확률적 광학 재구성 현미경(STORM), 광활성화 국소화 현미경(PALM), 팽창 현미경(ExM) 및 유도 방출 공핍(STED) 현미경 형태의 초고해상도 형광 현미경은 기존 광학 현미경 방법을 제한하는 회절 한계 미만의 해상도가 필요한 구조를 보는 데 널리 사용되는 방법이 되었습니다. ExM이 다른 초-분해능 기법과 함께 사용될 때, 결과는 인상적이지만, 샘플은 겔(61)에 고정되고 염색되어야 한다. 이에 비해 SIM, PALM/STORM 및 STED는 모두 라이브 샘플과 함께 성공적으로 사용되었으며, 일반적으로 IMM을 염색하는 새롭고 유망한 염료는 미토콘드리아 크리스타 역학 62,63,64,65,66의 라이브 이미징을 위한 새롭고 쉬운 접근 방식을 제공합니다. 최근 STED 이미징을 위한 생염료의 발전으로 염료의 밝기와 광안정성이 향상되었으며, 이러한 염료는 이전 염료보다 더 높은 특이성으로 IMM을 표적으로 합니다. 이러한 개발을 통해 초고해상도 이미징을 통한 장기 타임랩스 및 z-stack 실험을 수집할 수 있어 미토콘드리아 초미세 구조 및 역학에 대한 더 나은 라이브 셀 분석의 문을 열 수 있습니다.
여기에서는 STED63을 사용하여 PKmito Orange(PKMO) 염료로 염색된 미분화 및 분화된 SH-SY5Y 세포의 라이브 셀 이미징을 위한 프로토콜이 제공됩니다. SH-SY5Y 세포주는 전이성 신경모세포종67,68,69,70의 골수 생검에서 생성된 부모 세포주 SK-N-SH에서 3회 서브클로닝된 유도체입니다. 이 세포주는 ND 연구, 특히 미토콘드리아 기능 장애가 밀접하게 관련되어 있는 AD, HD 및 PD와 같은 질병에서 일반적으로 사용되는 시험관 내 모델입니다 10,43,71,72,73. 배양 배지 조작을 통해 SH-SY5Y 세포를 뉴런 유사 표현형을 가진 세포로 분화시키는 능력은 일차 신경 세포10,74에 의존하지 않고 신경 과학 연구에 적합한 모델임이 입증되었습니다. 이 프로토콜에서는 SH-SY5Y 세포의 분화를 유도하기 위해 세포 배양 배지에 레티노산(RA)을 첨가했습니다. RA는 비타민 A 유도체이며 세포주기를 조절하고 신경 세포 분화를 조절하는 전사 인자의 발현을 촉진하는 것으로 나타났습니다75. 쥐 해마에서 분리된 뉴런의 배양 및 생세포 이미징을 위한 프로토콜도 제공됩니다. 해마는 미토콘드리아 퇴화의 영향을 받는 것으로 나타났으며, 피질과 함께 노화와 ND 76,77,78,79,80에 중요한 역할을 한다.
이 프로토콜은 인간 신경모세포종 세포주 SH-SY5Y와 1차 쥐 해마 뉴런을 생세포 STED 이미징을 위한 새로운 IMM 표적 PKMO 염료와 함께 사용합니다. PKMO의 참신함으로 인해 현재 라이브 STED 영상에 이 염료를 사용하여 발표된 것은 거의 없습니다. STED 이미징에 이러한 세포 유형을 사용하는 것은 특히 신경 세포의 미토콘드리아가 더 좁기 때문에 문제가 됩니다. 이 프로토콜의 한 가지 제한 사항은 세포에 독성이 있을 수 있으므로 사용되는 PKMO 염료입니다. 세포와 세포주에 따라 염료에 다르게 반응하므로 세포에 해를 끼치지 않고 강력한 신호에 대한 결과를 최적화하기 위해 염료 농도 및 배양 시간을 조정해야 할 수 있습니다. 제안된 해결책은 농도를 낮추고 염색 시간을 늘리는 것이다(63); 그러나 이로 인해 세포 생존율을 증가시키지 않고 염색이 더 나빠질 수 있습니다.
PKMO와 유사하게, 상업용 염료 Live Orange mito (Table of Materials)도 일부 세포 독성을 나타냅니다. 이 염료는 다양한 배양 세포에 사용되었지만 미분화 세포와 동일한 파라미터로 RA 분화 SH-SY5Y 세포에서 유사한 염색을 성공적으로 나타낼 수 없었습니다(미발표 관찰). 그러나 수정 가능한 염색 프로토콜은 이 프로브와 선택한 세포 유형에 맞게 최적화될 수 있습니다. 이 염료를 사용하면 1-1.05 – 7-7.05ns의 검출기 게이팅 시간이 사용되었으며 표 1 의 다른 모든 파라미터는 동일하게 유지되었습니다. 일반적으로 200-250nM Live Orange mito로 45분 동안 세포를 염색하면 표시된 PKMO 결과와 유사한 결과가 나왔습니다. 더 짧은 시간 동안 고농도 염색 또는 동일한 시간 또는 약간 더 긴 시간 동안 더 낮은 농도 염색은 다른 결과를 얻을 수 있으며 다른 세포 유형 또는 성장 조건에 유리할 수 있습니다.
1차 쥐의 해마 뉴런을 이미징하는 것은 이미징 당시의 미토콘드리아 분포뿐만 아니라 축삭돌기 및 수상돌기 돌기의 특성으로 인해 불멸화된 세포와 다릅니다. 프로토콜의 이 부분에서 한 가지 어려운 점은 파종 밀도가 1차 배양물이 건강하게 부착되고 성장할 수 있는지 여부를 결정하며, 밀도가 높을수록 예측이 DIV 10까지 과도하게 자라는 경향이 있다는 것입니다. 따라서 이러한 1차 뉴런에서 이미지화된 미토콘드리아는 돌기가 아닌 세포체에서 나올 가능성이 높습니다. 그러나 낮은 시작 세포 밀도에서 성공적인 성장은 이후 성장 시간에 더 나은 이미징 결과를 제공합니다. 핵심은 STED에 가장 적합한 대비를 갖기 위해 낮은 배경과 초점이 맞지 않는 조명을 보장하는 것입니다. 세포 개체군에 대한 우려를 해소하기 위해 B27 보충 뉴런 성장 배지에서 일차 해마 세포를 배양하면 신경교세포의 성장을 방지할 수 있으며, 세포의 <5%가 성상교세포이며 성장 배지에 NbActiv1 보충제가 없으면 배양 내 성상교세포의 수가 <2%로 감소한다고 보고합니다87. 배양된 SH-SY5Y 세포와 1차 쥐 해마 뉴런 모두에서 성장에 사용되는 PDL 코팅은 이미지의 배경 헤이즈에 기여합니다. (표 1)에 보고된 설정으로 충분한 신호 대 잡음비가 달성되고 디콘볼루션은 관찰된 대부분의 배경을 제거합니다.
여기에서 다루는 이미징 외에도 이미징 전이나 이미징 중에 세포에 치료나 스트레스를 추가할 수도 있습니다. 예를 들어, tert-부틸 과산화수소(tBHP)를 첨가하면 산화 스트레스가 유발되며, 첨가 후 시간 경과에 따른 미토콘드리아의 변화를 모니터링할 수 있습니다. 형광 태그가 있는 아밀로이드 β(Aβ)을 추가하면 시간 경과에 따른 미토콘드리아 구조뿐만 아니라 미토콘드리아와 관련된 이 펩타이드의 분포를 모니터링할 수 있습니다. 미토콘드리아 건강은 알츠하이머병과 밀접한 관련이 있으며 Aβ 독성 43,71,72에 중요한 역할을 하는 것으로 널리 알려져 있습니다. 특히, SH-SY5Y 세포의 분화 상태는 Aβ 단백질 전구체(AβPP) 국소화85에 영향을 미치므로 AβPP를 이용한 실험은 신중하게 구성되어야 합니다.
이 프로토콜이 어떻게 적용될 수 있는지에 대한 예로, 형광 변이체 Aβ(1-42)-HiLyte 647을 이미징 15분 전에 PKMO 염색 세포에 첨가할 수 있음을 보여줍니다(보충 그림 1). 이미징 파라미터는 유사하지만(보충 표 2), 주요 차이점은 더 좁은 미토콘드리아를 이미징할 때 더 작은 핀홀이 필요하다는 것입니다. STED로 Aβ-HiLyte647을 이미징하면 전체 여기(6%-8%) 및 STED 고갈(10%-12%) 레이저 출력과 더 적은 축적(6회)이 필요합니다. 검출기 게이팅도 0.1ns에서 10ns로 확장됩니다. Aβ의 STED 분해능은 필요하지 않지만, 원시 STED의 전체 신호 대 잡음비 및 Aβ 입자 크기는 컨포칼 이미지보다 우수했으며 후속 디콘볼루션도 수행할 수 있습니다. STED 이미지를 수집하고 Aβ의 원시 STED z-스택 투영을 디컨벌루션하는 것은 PKMO 염색의 원시 STED 또는 디컨벌루션 STED 이미지와 병합할 때 특히 유용한 것으로 보입니다(보충 그림 1B,C). 두 채널 모두 단일 프레임 단계로 수집되었습니다. 해당되는 경우 그림 2 에 나열되고 그림 5에 표시된 것과 유사한 시간 종속 국소화 측정 및 크리스타 아키텍처 차이는 응력 처리 또는 기타 추가 후에 얻을 수 있습니다.
여기에 보고되지 않았지만 다른 사람들에 의해 보고된 미토콘드리아의 살아있는 세포 STED에서 이중 표지를 위한 다른 가능한 방법에는 SNAP-표지된 단백질93, Halo-표지된 단백질의 사용 및 mtDNA63과 같은 일반적인 표적을 갖는 다른 세포 투과성 염료의 사용이 포함됩니다. 특히, SNAP 및 Halo 태깅의 라벨링 전략은이미징 94 시 결과적인 형광 신호 강도와 수명에 영향을 미칩니다. 또한 이 프로토콜은 분할된 미토콘드리아에 적용할 수 있는 분석의 몇 가지 예를 제시하지만 소프트웨어 패키지가 이러한 이미지에 대해 수행할 수 있는 다른 많은 분석이 있습니다.
The authors have nothing to disclose.
1차 쥐의 해마 뉴런은 코네티컷 대학(미국 코네티컷주 스토스)의 생물의학공학과의 조지 리코트라피티스(George Lykotrafitis) 박사와 구시주(Shiju Gu) 박사가 제공하였다. Center for Open Research Resources and Equipment의 Advanced Light Microscopy Facility에 보관된 Abberior STED 기기는 Christopher O’Connell에게 수여된 NIH 보조금 S10OD023618으로 인수되었습니다. 이 연구는 NIH 보조금R01AG065879 Nathan N. Alder에게 수여되었습니다.
0.05% Trypsin-EDTA | Gibco | 25300054 | |
0.4% Trypan blue | Invitrogen | T10282 | |
0.5% Trypsin-EDTA, no phenol red | Gibco | 15400054 | |
100 X antibiotic-antimycotic | Gibco | 15240062 | |
100 X/1.40 UPlanSApo oil immersion lens | Olympus | Equipped in Olympus IX83 microscope for STED setup described in Section 4 | |
All-trans-retinoic acid | Sigma | R2625 | |
Amyloid-β (1-42, HiLyte Fluor647, 0.1 mg) | AnaSpec | AS-64161 | Other fluorescent conjugates available |
B27 supplement (50 X), serum free | Gibco | 17504044 | |
Cell Counter (Countess II FL) | Life Technologies | AMQAF1000 | |
Centrifuge | Eppendorf | 5804-R | |
Counter slides | Invitrogen | C10283 | |
Conical tubes (15 mL) | Thermo Fisher Scientific | 339650 | |
Cuvettes (Quartz Cells) | Starna Cells, Inc. | 9-Q-10 | Used with Spectrometer as described in Section 1.3 |
DMEM (high glucose with sodium pyruvate) | Gibco | 11995073 | Used for SH-SY5Y cell materials as described in Section 1 |
DMEM (high glucose no sodium pyruvate) | Gibco | 11965092 | Used for primary cell materials as described in Section 2 |
DMEM (phenol red-free) | Gibco | 31053028 | Used for imaging as described in Section 3 |
DMSO | Sigma | D8418 | |
DNAase I from bovine pancreas | Sigma | DN25 | Used for primary cell materials as described in Section 2.2.1 and 2.2.2 |
DPBS (no calcium, no magnesium) | Gibco | 14190144 | |
E18 Rat Hippocampus | Transnetyx Tissue | SDEHP | |
Ethanol (200 proof) | Fisher Bioreagents | BP28184 | |
Fetal bovine serum (FBS), not heat-inactivated | Gibco | 26140079 | For cultured cells, in Section 1 |
Fetal bovine serum (heat inactivated) | Gibco | 10082147 | For primary cell culture, Section 2 |
Filter sterilization unit (0.1 µm, 500 mL) | Thermo Fisher Scientific | 5660010 | |
FIJI (Is Just ImageJ) and Trainable Weka Segmentation (TWS) plug-in | — | — | Free, open-source image analysis software that includes plug-ins including Trainable Weka Segmentation described in Section 5; TWS plug-in from ref. 90 of the main text |
GlutaMAX supplement (100 X) | Gibco | 35050061 | Glutamine supplement used for primary cell materials described in Section 2.1.2 |
Hausser Scientific bright-Line and Hy-Lite Counting Chambers | Hausser Scientific | 267110 | |
HBSS (no calcium, no magnesium) | Gibco | 14170120 | Used for primary cell materials described in Section 2.2.1 and 2.2.2 |
HEPES | Gibco | 15630080 | |
Huygens Professional deconvolution software (V. 20.10) | Scientific Volume Imaging (SVI) | — | The deconvolution software used in this protocol and described in Section 5 |
IX83 inverted microscope with Continuous Autofocus | Olympus | — | This paper uses a STED Infinity Line system built around an Olympus IX83 inverted microscope, described in Section 4 |
Lightbox software (V. 16.3.16118) | Abberior | — | Vendor software used for STED image acquisition, described in Section 4 |
Live Orange Mito dye | Abberior | LVORANGE-0146-30NMOL | Live cell imaging IMM-targeting dye described in Discussion |
Neurobasal media | Gibco | 21103049 | Used for primary cell materials referred to in Section 2.1.2 |
Nunc Lab-Tek II 2-well chambered coverglass | Nunc | 155379 | Can purchase a variety of chambers but make sure the coverglass is #1.5 |
Pasteur Pipets (Fisherbrand) | Thermo Fisher Scientific | 22183632 | |
Penicillin-Streptomycin (10,000 U/mL) | Gibco | 15140122 | |
PKmito Orange dye | Spirochrome | SC053 | |
Poly-D-lysine | Gibco | A3890401 | |
SH-SY5Y Cell line | ATCC | CRL2266 | |
Sodium pyruvate (100 mM) | Gibco | 11360070 | Used for primary cell materials described in Section 2 |
Spectrometer (GENESYS 180 UV-Vis) | Thermo Fisher Scientific | 840309000 | |
STED Expert Line microscope | Abberior | — | STED setup can be customized, but at time of purchase instrument was considered Abberior’s Expert Line; brief description of setup is available in Section 4 of protocol |
T25 flask (TC-treated, filter cap) | Thermo Fisher Scientific | 156367 | Other culture vessels and sizes available |