脳における脈絡叢の重要な役割にもかかわらず、この構造の神経画像研究は、信頼性の高い自動セグメンテーションツールがないため、ほとんどありません。現在のプロトコルは、脈絡叢のゴールドスタンダードの手動セグメンテーションを確実にすることを目的としています 将来の神経画像研究に情報を提供できる。
脈絡叢は、神経発達やさまざまな脳障害に関与しています。脈絡叢は、脳の成熟、免疫/炎症調節、および行動/認知機能に重要であることを示す証拠があります。しかし、現在の自動ニューロイメージングセグメンテーションツールは、側脳室脈絡叢を正確かつ確実にセグメンテーションするのが不十分です。さらに、脳の第3脳室と第4脳室に位置する脈絡叢をセグメント化する既存のツールはありません。したがって、脈絡叢を側脳室、第3脳室、および第4脳室でセグメント化する方法を描写するプロトコルは、神経発達障害および脳障害における脈絡叢を調べる研究の信頼性と再現性を高めるために必要です。このプロトコルは、DICOMまたはNIFTI画像に基づいて脈絡叢の3Dスライサーで個別にラベル付けされたファイルを作成するための詳細な手順を提供します。脈絡叢は、T1w画像の軸面、矢状面、および冠状面を使用して手動でセグメント化され、心室に隣接する灰白質または白質構造からボクセルが除外されるようにします。ウィンドウは、脈絡叢とその解剖学的境界の局在化を支援するために調整されます。精度と信頼性を評価する方法は、このプロトコルの一部として実証されます。手作業による脈絡叢のゴールドスタンダードセグメンテーションは、生涯にわたる脈絡叢の変化やさまざまな脳障害内での脈絡叢の変化を解明するためにオープンに共有できる、より優れた、より信頼性の高い自動セグメンテーションツールを開発するために使用できます。
脈絡叢機能
脈絡叢は、有窓毛細血管と脈絡叢上皮細胞の単層からなる脳内の高度に血管新生した構造です1。脈絡叢は、外側、第3、第4脳室に突出し、脳脊髄液(CSF)を産生し、神経パターン形成2と脳生理学3,4に重要な役割を果たします。脈絡叢は神経血管物質を分泌し、幹細胞様の貯蔵庫を包含し、有毒な代謝物の侵入を妨げる物理的障壁、物理的障壁を回避する部分を除去する酵素的障壁、および外来侵入者から保護するための免疫学的障壁として機能します5。脈絡叢は、神経新生6、シナプス可塑性7、炎症8、概日リズム9,10、腸脳軸11、認知12を調節する。さらに、末梢サイトカイン、ストレス、および感染(SARS-CoV-2を含む)は、血液CSFバリアを破壊する可能性があります13,14,15,16。したがって、脈絡叢-CSF系は、神経発達、神経回路の成熟、脳の恒常性、および修復に不可欠である17。免疫、炎症、代謝、および酵素の変化が脳に影響を与えるため、研究者は神経画像ツールを使用して、生涯にわたる脈絡叢の役割と脳障害を評価しています18,19,20。ただし、脈絡叢のセグメンテーションに一般的に使用される自動化ツールには制限があり、FreeSurferなど、脈絡叢のセグメント化が不十分になります。したがって、脈絡叢セグメンテーションのための正確な自動化ツールを開発するために使用することができる脈絡叢のグラウンドトゥルース手動セグメンテーションが決定的に必要とされている。
神経発達および脳障害における脈絡叢
脳障害における脈絡叢の役割は、主に脳を緩衝し、適切な塩分バランスを維持することであった脇役と見なされていたため、長い間無視されてきました2,21。しかし、脈絡叢は、疼痛症候群22、SARS-CoV-2 16,23,24、神経発達2、脳障害19などの脳疾患に関連する構造として注目されており、行動障害の発症におけるトランス診断効果が示唆されています。神経発達障害では、脈絡叢嚢胞は発達遅延、注意欠陥/多動性障害(ADHD)、または自閉症スペクトラム障害(ASD)のリスクの増加と関連していました25,26。さらに、側脳室脈絡叢の容積はASD27の患者で増加することがわかりました。脳障害では、脈絡叢の異常は1921年以来、精神病性障害で報告されています28,29。以前の研究では、精神病性障害患者の大規模なサンプルで、FreeSurferセグメンテーションを使用して脈絡叢の拡大が特定されています 彼らの第一度近親者と対照の両方と比較して19。これらの所見は、精神病の臨床的高リスク集団の大規模なサンプルで、手動でセグメント化された脈絡叢容積を使用して再現され、これらの患者は健康な対照と比較して脈絡叢容積が大きいことがわかった30。複合性局所疼痛症候群22、脳卒中31、多発性硬化症20,32、アルツハイマー病33,34、うつ病35における脈絡叢の拡大を示す研究が増えており、末梢と脳の免疫/炎症活動との関連を示すものもあります。これらの神経画像研究は有望です。ただし、FreeSurfer21による側脳室脈絡叢のセグメンテーションが不十分なため、自動脈絡叢体積推定の信頼性が制限されます。その結果、多発性硬化症20,32、うつ病35、アルツハイマー病34、および早期精神病36の研究は、側脳室脈絡叢を手作業でセグメント化し始めているが、これを行う方法に関する現在のガイドラインはなく、第3および第4脳室脈絡叢のセグメント化に関するガイダンスもない。
一般的なセグメンテーションツールでは、脈絡叢は除外されます
FreeSurfer37,38,39、FMRIB Software Library (FSL)40、SLANT41、FastSurfer(共著者のMartin Reuterによって開発)42,43などの脳セグメンテーションパイプラインは、アトラスベース(FSL)、アトラスベースおよび表面ベース(FreeSurfer)、およびディープラーニングセグメンテーションパラダイム(SLANTおよびFastSurfer)を採用して、皮質および皮質下構造を正確かつ確実にセグメント化します。これらのアプローチのいくつかの弱点には、処理速度、異なるスキャナーへの限定された一般化、フィールドの強度とボクセルサイズ37,44、および標準アトラス空間でのラベルマップの強制的な位置合わせが含まれます。ただし、脈絡叢をセグメント化する機能と高解像度MRIとの互換性は、FreeSurferとFastSurferによってのみ対処されます。FastSurferの背後にあるニューラルネットワークは、FreeSurfer脈絡叢ラベルでトレーニングされているため、FreeSurferの以前に説明した信頼性とカバレッジの制限を継承し、第3心室と第4心室は無視されます21。高解像度MRIの現在の制限も存在しますが、FreeSurferの高解像度ストリーム45およびFastSurferVINN43を使用してこの問題を処理できます。
現在の脈絡叢セグメンテーションツール
脈絡叢用のセグメンテーションツールは1つしかありませんが、セグメンテーションの精度には限界があります。正確な脈絡叢のセグメンテーションは、(1)心室内の位置による脈絡叢の位置(空間的に非定常)の変動、(2)細胞の不均一性、動的脈絡叢機能、病理学的変化、または部分的な体積効果によるボクセル強度、コントラスト、分解能(構造内不均一性)の違い、(3)脈絡叢のサイズに影響を与える加齢または病理学関連の心室サイズの違い、 (4)隣接する皮質下構造(海馬、扁桃体、尾状、小脳)への近接性もセグメント化が困難です。これらの課題を考えると、FreeSurferのセグメンテーションは、脈絡叢を過小評価または過大評価したり、誤ったラベル付けをしたり、無視したりすることがよくあります。
最近の3つの論文では、ガウス混合モデル(GMM)46、Axial-MLP47、およびU-Netベースの深層学習アプローチ48による信頼性の高い脈絡叢セグメンテーションのギャップが取り上げられています。各モデルは、スキャナー、サイト、人口統計、および障害の多様性が限られている最大150人の被験者のプライベートで手動でラベル付けされたデータセットを使用してトレーニングおよび評価されました。これらの出版物46,48,49は、FreeSurferの脈絡叢セグメンテーションよりも大幅な改善を達成しましたが-予測とグラウンドトゥルースの交差を2倍にすることもありますが、どちらの方法も(1)高解像度MRIで検証されておらず、(2)専用の一般化および信頼性分析があり、(3)大規模な代表的なトレーニングおよびテストデータセットを特徴としており、(4)脈絡叢セグメンテーションの課題に具体的に対処または分析しています。パーシャルボリュームエフェクト(5)は、すぐに使えるツールとして公開されています。したがって、脈絡叢セグメンテーションの現在の「ゴールドスタンダード」は、例えば、3Dスライサー50またはITK-SNAP51を使用した手動トレースであり、これは以前には説明されておらず、研究における脈絡叢の役割を調べたい研究者にとって大きな課題となっています。3D Slicerが手動セグメンテーションに選ばれたのは、著者がソフトウェアに精通していることと、さまざまなアプローチに基づいてさまざまなツールをユーザーに提供し、それらを組み合わせて目的の結果を得ることができるためです。主に画像のセグメンテーションを指向するITK-SNAPなど、他のツールを使用することができ、ツールを習得すると、ユーザーは良い結果を得ることができます。さらに、著者らは、3Dスライサー30を用いた手動セグメンテーション技術の高精度および信頼性を実証する症例対照研究を実施しており、その具体的な方法論を本明細書に記載する。
プロトコルの重要なステップ
このプロトコルを実装する際には、3つの重要なステップに特別な注意が必要です。まず、MR画像の品質とコントラストを確認することは、正確なセグメンテーションを確保するための鍵です。画像の品質が低すぎたり高すぎたりすると、脈絡叢の描写が不正確になる可能性があります。画像のコントラストは、画像のグレースケール値を表示する?…
The authors have nothing to disclose.
この研究は、国立精神衛生研究所賞R01 MH131586(P.L.とM.R.へ)、R01 MH078113(M.K.へ)、およびSydney R Baer Jr財団助成金(P.L.へ)の支援を受けました。
3D Slicer | 3D Slicer | https://www.slicer.org/ | A free, open source software for visualization, processing, segmentation, registration, and analysis of medical, biomedical, and other 3D images and meshes; and planning and navigating image-guided procedures. |
FreeSurfer | FreeSurfer | https://surfer.nmr.mgh.harvard.edu/ | An open source neuroimaging toolkit for processing, analyzing, and visualizing human brain MR images |
ITK-SNAP | ITK-SNAP | http://www.itksnap.org/pmwiki/pmwiki.php | A free, open-source, multi-platform software application used to segment structures in 3D and 4D biomedical images. |
Monai Package | Monai Consortium | https://docs.monai.io/en/stable/metrics.html | Use for Dice Coefficient and DeepMind average Surface Distance. |
MRI scanner | GE | Discovery MR750 | |
Psych Package | R-Project | https://cran.r-project.org/web/packages/psych/index.html | A general purpose toolbox developed originally for personality, psychometric theory and experimental psychology. |
R Software | R-Project | https://www.r-project.org/ | R is a free software environment for statistical computing and graphics. |
RStudio | Posit | https://posit.co/ | An RStudio integrated development environment (IDE) is a set of tools built to help you be more productive with R and Python. |
Windows or Apple OS Desktop or Laptop | Any company | n/a | Needed for running the software used in this protocol. |