Armadilhas extracelulares de neutrófilos (NETs) estão associadas a várias doenças, e a imunofluorescência é frequentemente usada para sua visualização. No entanto, existem vários protocolos de coloração e, em muitos casos, apenas um tipo de tecido é examinado. Aqui, estabelecemos um protocolo geralmente aplicável para coloração de NETs em tecido humano e de camundongo.
As armadilhas extracelulares de neutrófilos (NETs) são liberadas pelos neutrófilos como resposta à infecção bacteriana ou dano traumático do tecido, mas também desempenham um papel em doenças autoimunes e inflamação estéril. São estruturas semelhantes a teias compostas por filamentos de DNA de fita dupla, histonas e proteínas antimicrobianas. Uma vez liberados, os NETs podem capturar e matar patógenos extracelulares no sangue e no tecido. Além disso, os TNEs participam da regulação homeostática, estimulando a adesão plaquetária e a coagulação. No entanto, a produção desregulada de TNEs também tem sido associada a várias doenças, incluindo sepse ou doenças autoimunes, o que as torna um alvo promissor para intervenção terapêutica. Além da microscopia eletrônica, a visualização de NETs usando imagens de imunofluorescência é atualmente um dos únicos métodos conhecidos para demonstrar interações de NET no tecido. Portanto, vários métodos de coloração para visualização de NETs têm sido utilizados. Na literatura, diferentes protocolos de coloração são descritos, e identificamos quatro componentes-chave mostrando alta variabilidade entre os protocolos: (1) os tipos de anticorpos utilizados, (2) o uso de agentes redutores de autofluorescência, (3) métodos de recuperação de antígenos e (4) permeabilização. Portanto, os protocolos de coloração por imunofluorescência in vitro foram adaptados e aprimorados sistemicamente neste trabalho para torná-los aplicáveis a diferentes espécies (camundongo, humano) e tecidos (pele, intestino, pulmão, fígado, coração, disco vertebral). Após fixação e inclusão em parafina, cortes de 3 μm de espessura foram montados sobre as lâminas. Essas amostras foram coradas com anticorpos primários para mieloperoxidase (MPO), histona citrulinada H3 (H3cit) e elastase neutrofílica (NE) de acordo com um protocolo de coloração modificado. As lâminas foram coradas com anticorpos secundários e examinadas em microscópio de fluorescência de campo largo. Os resultados foram analisados de acordo com uma ficha de avaliação, e as diferenças foram registradas semiquantitativamente.
Aqui, apresentamos um protocolo otimizado de coloração NET adequado para diferentes tecidos. Usamos um novo anticorpo primário para corar para H3cit e reduzimos a coloração inespecífica com um agente redutor de autofluorescência. Além disso, demonstramos que a coloração NET requer uma alta temperatura constante e manuseio cuidadoso das amostras.
As armadilhas extracelulares de neutrófilos (NETs) foram visualizadas pela primeira vez por Brinkmann e col. como uma via de morte celular diferente da apoptose e necrose em 20041. Nessa via, os neutrófilos liberam sua cromatina descondensada no espaço extracelular para formar grandes estruturas semelhantes a teias cobertas por proteínas antimicrobianas que antes eram armazenadas nos grânulos ou citosol. Essas proteínas antimicrobianas incluem elastase neutrofílica (NE), mieloperoxidase (MPO) e histona citrulinada H3 (H3cit), que são comumente usadas para detecção por imunofluorescência indireta de NETs2. Esse método não apenas identifica a presença quantitativa dessas proteínas; na verdade, ele tem a vantagem de detectar especificamente estruturas semelhantes à NET. Nas NETs, as proteínas mencionadas co-localizam-se com o DNA extracelular, que pode ser detectado por uma sobreposição dos sinais de fluorescência de cada proteína corada e do DNA extracelular. Em contraste com os sinais de sobreposição devido ao DNA extracelular e à co-localização de proteínas em NETs, os neutrófilos intactos não mostram co-localização. Aqui, os componentes NET são geralmente armazenados separadamente nos grânulos, núcleos e citosol3.
Desde sua primeira descoberta, tem sido demonstrado que as NETs desempenham um papel central em inúmeras doenças, particularmente aquelas que envolvem inflamação. Os TNEs apresentam funções antimicrobianas durante a infecção através do aprisionamento e morte de patógenos extracelulares no sangue e nos tecidos 4,5. No entanto, os TNEs também têm sido associados a doenças autoimunes e respostas hiperinflamatórias, como lúpus eritematoso sistêmico, artrite reumática e asma alérgica 6,7,8. Os TNEs promovem vaso-oclusão e inflamação na aterosclerose, adesão plaquetária e especula-se que desempenhem um papel no câncer metastático 9,10,11. No entanto, acredita-se que tenham propriedades anti-inflamatórias, reduzindo os níveis de citocinas pró-inflamatórias12. Embora as NETs estejam ganhando mais interesse em um campo mais amplo de pesquisa, um método robusto de detecção de NET é fundamental para pesquisas futuras.
Embora a visualização de NETs em diferentes tecidos por imunofluorescência seja complexa e necessite de personalização, além da microscopia eletrônica, é atualmente um dos métodos mais renomados para visualizar as interações entre NETs e células, sendo predominantemente utilizada em tecidos fixados em formalina e emblocados em parafina (FFPE)13,14. No entanto, a comparação de imagens NET é difícil, pois diferentes laboratórios usam seus próprios protocolos personalizados. Esses protocolos diferem no uso de anticorpos, recuperação de antígenos ou método de permeabilização e são frequentemente otimizados para um tipo específico de tecido 3,13,15,16,17,18,19,20,21,22,23,24,25,26 ,27º.
Após Brinkmann e col. publicarem o primeiro estudo metódico utilizando a visualização imunofluorescente de NETs em tecido FFPE, quisemos otimizar esse protocolo para uma maior variedade de tecidos e espécies15. Além disso, para estabelecer um protocolo de imunofluorescência amplamente aplicável, testamos diferentes protocolos modificados de estudos que utilizaram métodos de imunofluorescência em tecido FFPE para detectar NETs 3,13,16,17,18,19,20,21,22,23,24,25, 26,27. Além disso, tentamos um novo anticorpo contra H3cit para coloração extracelular mais específica28. Nós hipotetizamos que, adaptando sistematicamente os protocolos de coloração atuais para diferentes espécies e tecidos, a imagem in vitro pode ser melhorada, resultando em uma melhor representação da interação entre neutrófilos e NETs tanto local quanto sistemicamente.
Neste trabalho, nosso objetivo foi adaptar e otimizar os protocolos existentes de obtenção de imagens de TNEs para mais tipos de tecidos, começando pelo processo de coloração propriamente dito. O primeiro passo crítico para este método é a seleção dos anticorpos mais adequados. Para NE, tentamos um anticorpo NE de um hospedeiro de camundongo em tecido humano, que não mostrou coloração confiável em comparação com NE de um hospedeiro coelho. Além disso, Thålin et al., propuseram o H3cit (R8) como um antic…
The authors have nothing to disclose.
Esta pesquisa foi fundada pela Sociedade Alemã de Pesquisa (BO5534). Agradecemos a Antonia Kiwitt, Moritz Lenz, Johanna Hagens, Dra. Annika Heuer e PD Dr. Ingo Königs por nos fornecerem amostras. Além disso, os autores agradecem à equipe do UKE Microscopy Imaging Facility (Core facility, UKE Medical School) pelo suporte com a microscopia de imunofluorescência.
Dilution | |||
Anti-Neutrophil Elastase antibody 100µg | abcam | Ab 68672 | 1:100 |
Anti-Histone H3 (citrulline R2 + R8 + R17) antibody 100µg | abcam | Ab 5103 | 1:50 |
Anti-Myeloperoxidase antibody [2C7] anti-human 100 µg | abcam | Ab 25989 | 1:50 |
Anti-Myeloperoxidase antibody [2D4] anti-mouse 50 µg | abcam | Ab 90810 | 1:50 |
Axiovision Microscopy Software | Zeiss | 4.8.2. | |
Blocking solution with donkey serum (READY TO USE) 50ml | GeneTex | GTX30972 | |
Coverslips | Marienfeld | 0101202 | |
Dako Target Retrieval Solution Citrate pH6 (x10) | Dako | S2369 | |
DAPI 25 mg | Roth | 6335.1 | 1:25000 |
DCS antibody dilution 500 mL | DCS diagnostics | DCS AL120R500 | |
Donkey ant goat Cy3 | JacksonImmunoResearch | 705-165-147 | 1:200 |
Donkey anti rabbit AF647 | JacksonImmunoResearch | 711-605-152 | 1:200 |
Donkey anti rabbit Cy3 | JacksonImmunoResearch | 711-165-152 | 1:200 |
Fluoromount-G Mounting Medium | Invitrogen | 00-4958-02 | |
Glass slide rack | Roth | H552.1 | |
Human/Mouse MPO Antibody | R&D Systems | AF 3667 | 1:20 |
Hydrophobic Pen | KISKER | MKP-1 | |
Isokontrolle Rabbit IgG Polyclonal 5mg | abcam | Ab 37415 | 1:2000 and 1:250 |
MaxBlock Autofluorescence Reducing Reagent Kit (RUO) 100 ml | Maxvision | MB-L | |
Microscopy camera | Zeiss | AxioCamHR3 | |
Microwave | Bosch | HMT84M421 | |
Mouse IgG1 negative control | Dako | X0931 Aglient | 1:50 and 1:5 |
Normal Goat IgG Control | R&D Systems | AB-108-C | 1:100 |
PBS Phosphate buffered saline (10x) | Sigma-Aldrich | P-3813 | |
PMP staining jar | Roth | 2292.2 | |
Recombinant Anti-Histone H3 (citrulline R8) antibody 100µg | abcam | Ab 219406 | 1:100 |
Recombinant Rabbit IgG, monoclonal [EPR25A] – Isotype Control 200µg | abcam | Ab 172730 | 1:300 |
ROTI Histol | Roth | 6640 | |
SuperFrost Plus slides | R. Langenbrinck | 03-0060 | |
TBS Tris buffered saline (x10) | Sigma-Aldrich | T1503 | |
Triton X-100 | Sigma-Aldrich | T8787 | |
Tween 20 | Sigma-Aldrich | P9416 | |
Water bath | Memmert | 830476 | |
Water bath rice cooker | reishunger | RCP-30 | |
Wet chamber | Weckert Labortechnik | 600016 | |
Zeiss Widefield microscope | Zeiss | Axiovert 200M |