Summary

Alineación de figramas de tomografía de coherencia óptica en luz visible con imágenes confocales de la misma retina de ratón

Published: June 30, 2023
doi:

Summary

El presente protocolo describe los pasos para alinear las imágenes de fibragrafía de tomografía de coherencia óptica en luz visible (vis-OCTF) in vivo con imágenes confocales ex vivo de la misma retina de ratón con el fin de verificar la morfología del haz de axones de las células ganglionares de la retina observada en las imágenes in vivo .

Abstract

En los últimos años, la imagen de la retina in vivo , que proporciona información no invasiva, en tiempo real y longitudinal sobre los sistemas y procesos biológicos, se ha aplicado cada vez más para obtener una evaluación objetiva del daño neuronal en las enfermedades oculares. A menudo se necesitan imágenes confocales ex vivo de la misma retina para validar los hallazgos in vivo , especialmente en la investigación con animales. En este estudio, demostramos un método para alinear una imagen confocal ex vivo de la retina del ratón con sus imágenes in vivo . Se aplicó una nueva tecnología de imagen clínicamente preparada llamada figrafía de tomografía de coherencia óptica de luz visible (vis-OCTF) para adquirir imágenes in vivo de la retina del ratón. A continuación, realizamos la obtención de imágenes confocales de la misma retina que el “estándar de oro” para validar las imágenes in vivo vis-OCTF. Este estudio no solo permite una mayor investigación de los mecanismos moleculares y celulares, sino que también sienta las bases para una evaluación sensible y objetiva del daño neuronal in vivo.

Introduction

Las células ganglionares de la retina (CGR) desempeñan un papel fundamental en el procesamiento de la información visual, recibiendo entradas sinápticas a través de sus árboles dendríticos en la capa plexiforme interna (IPL) y transmitiendo la información a través de sus axones en la capa de fibras nerviosas de la retina (RNFL) al cerebro 1,2,3,4. En enfermedades como el glaucoma, la degeneración temprana de RGC puede dar lugar a cambios sutiles en el RNFL, la capa de células ganglionares (LCG), la LPI y el nervio óptico tanto en pacientes como en modelos de roedores 5,6,7,8,9. Por lo tanto, la detección temprana de estos cambios morfológicos en las CGR es esencial para una intervención oportuna para prevenir las CGR y la pérdida de visión.

Recientemente hemos desarrollado una nueva tecnología de imagen clínicamente lista llamada tomografía de coherencia óptica de luz visible (vis-OCT) para satisfacer la necesidad de monitoreo in vivo del daño de RGC. Vis-OCT mejoró la resolución axial, alcanzando 1,3 μm en la retina10,11, lo que permitió la visualización de haces de axones RGC individuales en el RNFL. Posteriormente, se estableció la figrafía vis-OCT (vis-OCTF) para rastrear y cuantificar el daño de RGC a nivel de haz de axones únicos en ratones11,12,13. Sin embargo, a menudo se necesitan imágenes confocales ex vivo de la misma retina que el estándar de oro para validar los hallazgos in vivo. Por lo tanto, este estudio demostrará cómo alinear imágenes in vivo adquiridas por vis-OCTF con imágenes confocales ex vivo de la misma retina de ratón. El protocolo tiene como objetivo validar los hallazgos in vivo mediante imágenes confocales ex vivo y establecer una base para examinar los cambios moleculares y celulares subyacentes al daño de RGC en condiciones enfermas.

Protocol

Todos los procedimientos con animales fueron aprobados por el Comité Institucional de Cuidado y Uso de Animales de la Universidad de Virginia y se ajustaron a la directriz sobre el uso de animales del Instituto Nacional de Salud (NIH). Consulte la Tabla de materiales para obtener detalles relacionados con todos los materiales, reactivos e instrumentos utilizados en este protocolo. 1. Imágenes in vivo vis-OCT El sistema vis-OCTImagi…

Representative Results

El fitragrama vis-OCT compuesto se compara con la imagen confocal correspondiente de la retina de montaje plano inmunoteñida con Tuj-1 para los axones de RGC (Figura 1D, panel superior). Los haces de axones de los que se obtienen imágenes mediante vis-OCTF se pueden hacer coincidir con los haces de axones marcados con Tu-j1 en la imagen confocal. Los vasos sanguíneos suelen exhibir estructuras ramificadas distinguibles en comparación con los haces de axones circundantes en las imágenes …

Discussion

Hay dos pasos en este protocolo que requieren atención. En primer lugar, es necesario asegurarse de que el animal esté bajo anestesia profunda y que sus ojos estén completamente dilatados antes de la obtención de imágenes por OCT. Si los ratones no están adecuadamente anestesiados, su respiración acelerada puede provocar movimientos inestables de las imágenes faciales , lo que puede afectar negativamente a la calidad del fitragrama. Además, una dilatación insuficiente también puede tener un impacto ne…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Este estudio cuenta con el apoyo de la Beca Shaffer de la Fundación para la Investigación del Glaucoma, el Premio Colaborativo 4-CA Cavalier, R01EY029121, R01EY035088 y la Fundación Ocular de los Caballeros Templarios.

Materials

Equipment
Halo 100 Opticent Health, Evanston, IL
Zeiss LSM800 microscope Carl Zeiss
Drugs and antibodies
4% paraformaldehyde (PFA) Santz Cruz Biotechnology, SC-281692 1-2 drops
Bovine serum albumin powder Fisher Scientific, BP9706-100 1:10
Donkey anti Mouse Alexa Fluor 488 dye Thermo Fisher Scientific, Cat# A-21202 1:1,000
Donkey anti rat Alexa Fluor 594 dye Thermo Fisher Scientific, Cat# A-21209 1:1,000
Euthasol (a mixture of pentobarbital sodium (390 mg/mL) and phenytoin sodium (50 mg/mL)) Covetrus, NDC 11695-4860-1 15.6 mg/mL
Ketamine Covetrus, NADA043304 114 mg/kg
Mouse anti-Tuj1 A gift from Anthony J. Spano, University of Virginia 1:200
Normal donkey serum(NDS) Millipore Sigma, S30-100 mL 1:100
Phosphate-buffered saline (PBS, 10x), pH 7.4
(Contains 1370 mM NaCl, 27 mM KCl, 80 mM Na2HPO4, and 20 mM KH2PO4)
Thermo Fisher Scientific, Cat# J62036.K3 1:10
Rat anti-ICAM-2 BD Pharmingen, Cat#553325 1:500
Tropicamide drops  Covetrus, NDC17478-102-12
Triton X-100
(Reagent Grade)
VWR, CAS: 9002-93-1 1:20
Vectashield mounting medium Vector Laboratories Inc. H2000-10
Xylazine Covetrus, NDC59399-110-20 17 mg/kg

References

  1. Sernagor, E., Eglen, S. J., Wong, R. O. Development of retinal ganglion cell structure and function. Progress in Retinal and Eye Research. 20 (2), 139-174 (2001).
  2. Sanes, J. R., Masland, R. H. The types of retinal ganglion cells: current status and implications for neuronal classification. Annual Review of Neuroscience. 38, 221-246 (2015).
  3. Seabrook, T. A., Burbridge, T. J., Crair, M. C., Huberman, A. D. Architecture, function, and assembly of the mouse visual system. Annual Review of Neuroscience. 40, 499-538 (2017).
  4. Cang, J., Savier, E., Barchini, J., Liu, X. Visual function, organization, and development of the mouse superior colliculus. Annual Review of Vision Science. 4, 239-262 (2018).
  5. Quigley, H. A. Understanding glaucomatous optic neuropathy: the synergy between clinical observation and investigation. Annual Review of Vision Science. 2, 235-254 (2016).
  6. Whitmore, A. V., Libby, R. T., John, S. W. Glaucoma: thinking in new ways-a role for autonomous axonal self-destruction and other compartmentalised processes. Progress in Retinal and Eye Research. 24 (6), 639-662 (2005).
  7. Syc-Mazurek, S. B., Libby, R. T. Axon injury signaling and compartmentalized injury response in glaucoma. Progress in Retinal and Eye Research. 73, 100769 (2019).
  8. Puyang, Z., Chen, H., Liu, X. Subtype-dependent morphological and functional degeneration of retinal ganglion cells in mouse models of experimental glaucoma. Journal of Nature and Science. 1 (5), (2015).
  9. Tatham, A. J., Medeiros, F. A. Detecting structural progression in glaucoma with optical coherence tomography. Ophthalmology. 124, S57-S65 (2017).
  10. Shu, X., Beckmann, L., Zhang, H. Visible-light optical coherence tomography: a review. Journal of Biomedical Optics. 22 (12), 1-14 (2017).
  11. Miller, D. A., et al. Visible-light optical coherence tomography fibergraphy for quantitative imaging of retinal ganglion cell axon bundles. Translational Vision Science and Technology. 9 (11), (2020).
  12. Beckmann, L., et al. In vivo imaging of the inner retinal layer structure in mice after eye-opening using visible-light optical coherence tomography. Experimental Eye Research. 211, 108756 (2021).
  13. Grannonico, M., et al. Global and regional damages in retinal ganglion cell axon bundles monitored non-invasively by visible-light optical coherence tomography fibergraphy. Journal of Neuroscience. 41 (49), 10179-10193 (2021).
  14. Allen-Worthington, K. H., Brice, A. K., Marx, J. O., Hankenson, F. C. Intraperitoneal Injection of Ethanol for the Euthanasia of Laboratory Mice (Mus musculus) and Rats (Rattus norvegicus). J Am Assoc Lab Anim Sci. 54 (6), 769-778 (2015).
  15. Boivin, G. P., Bottomley, M. A., Schiml, P. A., Goss, L., Grobe, N. Physiologic, Behavioral, and Histologic Responses to Various Euthanasia Methods in C57BL/6NTac Male Mice. J Am Assoc Lab Anim Sci. 56 (1), 69-78 (2017).
  16. Chen, H., et al. Progressive degeneration of retinal and superior collicular functions in mice with sustained ocular hypertension. Investigative Ophthalmology and Visual Science. 56 (3), 1971-1984 (2015).
  17. Feng, L., Chen, H., Suyeoka, G., Liu, X. A laser-induced mouse model of chronic ocular hypertension to characterize visual defects. Journal of Visualized Experiments: JoVE. 78 (78), (2013).
  18. Gao, J., et al. Differential effects of experimental glaucoma on intrinsically photosensitive retinal ganglion cells in mice. Journal of Comparative Neurology. 530 (9), 1494-1506 (2022).
  19. Thomson, B. R., et al. Angiopoietin-1 knockout mice as a genetic model of open-angle glaucoma. Translational Vision Science and Technology. 9 (4), (2020).
  20. Feng, L., et al. Sustained ocular hypertension induces dendritic degeneration of mouse retinal ganglion cells that depends on cell type and location. Investigative Ophthalmology and Visual Science. 54 (2), 1106-1117 (2013).
  21. Grannonico, M., et al. Longitudinal analysis of retinal ganglion cell damage at individual axon bundle level in mice using visible-light optical coherence tomography fibergraphy. Translational Vision Science and Technology. 12 (5), (2023).

Play Video

Cite This Article
Chang, S., Xu, W., Fan, W., McDaniel, J. A., Grannonico, M., Miller, D. A., Liu, M., Zhang, H. F., Liu, X. Alignment of Visible-Light Optical Coherence Tomography Fibergrams with Confocal Images of the Same Mouse Retina. J. Vis. Exp. (196), e65237, doi:10.3791/65237 (2023).

View Video