ניתן לייצר זהב ננו-נקבובי עם התפלגות גודל נקבוביות היררכית ובימודאלית על ידי שילוב של סגסוגת אלקטרוכימית וכימית. ניתן לעקוב אחר הרכב הסגסוגת באמצעות בדיקת EDS-SEM ככל שתהליך הסגסוגת מתקדם. ניתן לקבוע את כושר ההעמסה של החומר על ידי לימוד ספיחת חלבונים על החומר.
הפוטנציאל ליצור גדלי נקבוביות משתנים, שינוי פני שטח פשטני ומגוון שימושים מסחריים בתחומי ביוסנסורים, מפעילים, העמסה ושחרור תרופות ופיתוח זרזים האיצו ללא ספק את השימוש בננו-חומרים מבוססי זהב ננו-נקבובי (NPG) במחקר ופיתוח. מאמר זה מתאר את תהליך הייצור של זהב ננו-נקבובי בימודאלי היררכי (hb-NPG) על ידי שימוש בהליך חכם שלב הכולל סגסוגת אלקטרוכימית, טכניקות סגסוגת כימית וחישול ליצירת מאקרו ומזופורים. זה נעשה כדי לשפר את התועלת של NPG על ידי יצירת מורפולוגיה מוצק / ריק דו רציף. השטח הזמין לשינוי פני השטח משופר על ידי נקבוביות קטנות יותר, בעוד שההובלה המולקולרית נהנית מרשת של נקבוביות גדולות יותר. הארכיטקטורה הבימודאלית, שהיא תוצאה של סדרה של שלבי ייצור, מומחשת באמצעות מיקרוסקופ אלקטרונים סורק (SEM) כרשת של נקבוביות שגודלן פחות מ-100 ננומטר והן מחוברות באמצעות רצועות לנקבוביות גדולות יותר שגודלן כמה מאות ננומטרים. שטח הפנים הפעיל אלקטרוכימית של hb-NPG מוערך באמצעות וולטמטריה מחזורית (CV), תוך התמקדות בתפקידים הקריטיים שגם סגסוגת וגם חישול ממלאים ביצירת המבנה הדרוש. ספיחה של חלבונים שונים נמדדת על ידי טכניקת דלדול תמיסה, חושפת את הביצועים הטובים יותר של hb-NPG במונחים של העמסת חלבון. על ידי שינוי יחס שטח הפנים לנפח, אלקטרודת hb-NPG שנוצרה מציעה פוטנציאל עצום לפיתוח biosensor. כתב היד דן בשיטה ניתנת להרחבה ליצירת מבני שטח hb-NPG, שכן הם מציעים שטח פנים גדול לאימוביליזציה של מולקולות קטנות ומסלולי הובלה משופרים לתגובות מהירות יותר.
לעתים קרובות נראה בטבע, ארכיטקטורות נקבוביות היררכיות חיקו בקנה מידה ננומטרי כדי לשנות את המאפיינים הפיזיים של חומרים לשיפור הביצועים1. אלמנטים מבניים מחוברים זה לזה בקני מידה שונים של אורך הם מאפיין של הארכיטקטורה ההיררכית של חומרים נקבוביים2. למתכות ננו-נקבוביות מסגסוגות יש בדרך כלל התפלגות גודל נקבוביות חד-מודאלית; לפיכך, פותחו טכניקות רבות ליצירת מבנים נקבוביים בימודאליים היררכיים עם שני טווחי גודל נפרדים של נקבוביות3. שתי המטרות הבסיסיות של גישת תכנון החומרים, כלומר שטח הפנים הספציפי הגדול לפונקציונליזציה ונתיבי הובלה מהירים, שהם מובחנים ומטבעם סותרים זה את זה, ממומשות על ידי חומרים פונקציונליים בעלי היררכיה מבנית 4,5.
ביצועי החיישן האלקטרוכימי נקבעים על ידי המורפולוגיה של האלקטרודה, שכן גודל הנקבוביות של הננומטריצה חיוני להובלה מולקולרית ולכידה. נקבוביות קטנות נמצאו כמסייעות בזיהוי המטרה בדגימות מורכבות, בעוד נקבוביות גדולות יותר משפרות את נגישות מולקולת המטרה, ומגדילות את טווח הזיהוי של החיישן6. ייצור מבוסס תבנית, ציפוי אלקטרוליטי, כימיה סינתטית מלמטה למעלה, תצהיר מקרטע דק7, מטריצות גמישות מורכבות המבוססות על תמיכה פולידימתילסילוקסאן8, סגסוגת של מתכות שונות ואחריה חריטה סלקטיבית של המתכת הפחות אצילה, ואלקטרודפוזיציה הן חלק מהשיטות המשמשות לעתים קרובות להחדרת ננו-מבנים לאלקטרודה. אחת השיטות הטובות ביותר ליצירת מבנים נקבוביים היא הליך dealloying. בשל הפער בשיעורי ההתמוססות, מתכת ההקרבה, שהיא המתכת הפחות אצילה, משפיעה באופן משמעותי על המורפולוגיה הסופית של האלקטרודה. רשת מקושרת של נקבוביות ורצועות נובעת מתהליך יעיל של יצירת מבני זהב ננו-נקבוביים (NPG), שבו הרכיב הפחות אצילי מתמוסס באופן סלקטיבי מתוך סגסוגת ההתחלה, והאטומים הנותרים מתארגנים מחדש ומתאחדים9.
השיטה של dealloying/ציפוי/dealloying מחדש בשימוש על ידי דינג וארלבאכר כדי ליצור ננו-מבנים אלה כללה תחילה חשיפת סגסוגת קודמן המורכבת זהב וכסף לסגסוגת כימית באמצעות חומצה חנקתית, ולאחר מכן חימום בטמפרטורה גבוהה יותר עם התפלגות גודל נקבוביות אחת כדי ליצור את הרמה ההיררכית העליונה, והסרת הכסף שנותר באמצעות סגסוגת שנייה כדי לייצר את הרמה ההיררכית הנמוכה יותר. שיטה זו הייתה ישימה לסרטים דקים10. שימוש בסגסוגות טרינריות, המורכבות משתי מתכות אצילות תגובתיות יותר באופן יחסי, שנשחקות בזו אחר זו, הומלץ על ידי Biener ואחרים; Cu ו-Ag הוסרו בתחילה מהחומר Cu-Ag-Au, והותירו אחריהם דגימות NPG בעלות מבנה דו-מודאלי וצפיפות נמוכה11. מבנים מסודרים לטווח ארוך אינם מיוצרים על ידי ההליכים המתוארים באמצעות סגסוגות טרינריות. נקבוביות גדולות יותר נוצרו על ידי חילוץ אחד השלבים של סגסוגת האב של אל-או שהועסק על ידי Zhang et al., אשר ייצר את המבנה הבימודאלי עם מידה מינימלית של סדר12. על פי הדיווחים, מבנה היררכי מסודר נוצר על ידי שליטה בכמה סקאלות אורך, באמצעות שימוש במסלולי עיבוד הכוללים פירוק חומרים בתפזורת וחיבור רכיבים בסיסיים למבנים גדולים יותר. במקרה זה, מבנה NPG היררכי נוצר באמצעות כתיבת דיו ישירה (DIW), סגסוגת וסגסוגת13.
כאן מוצגת שיטת סגסוגת דו-שלבית לייצור מבנה היררכי של זהב ננו-נקבובי בימודאלי (hb-NPG) תוך שימוש בהרכבי סגסוגת Au-Ag שונים. כמות האלמנט הריאקטיבי שמתחתיו נעצרת הסגסוגת היא, בתיאוריה, גבול הפרידה. קינטיקה של דיפוזיית פני השטח מושפעת מעט מגבול הפרידה או סף הסגסוגת, שהוא בדרך כלל בין 50 ל -60 אחוז אטומי לפירוק אלקטרוליטי של הרכיב הריאקטיבי יותר מסגסוגת בינארית. חלק אטומי גדול של Ag בסגסוגת Au:Ag הכרחי לסינתזה מוצלחת של hb-NPG, מכיוון שלא ניתן להשלים בהצלחה את תהליכי הסגסוגת האלקטרוכימית והכימית בריכוזים נמוכים הקרובים לגבול הפרידה14.
היתרון של שיטה זו הוא שניתן לשלוט היטב במבנה ובגודל הנקבוביות. כל שלב בפרוטוקול חיוני לכוונון עדין של סולם אורך הנקבוביות האופייני והמרחק האופייני בין רצועות15. כדי לווסת את קצב הדיפוזיה וההמסה של יונים, המתח המופעל מכויל בקפידה. כדי למנוע סדקים במהלך dealloying, קצב המסת Ag נשלט.
באמצעות הליך רב-שלבי הכולל סגסוגת, סגסוגת חלקית, טיפול תרמי וחריטה חומצית, מודגם ייצור NPG היררכי עם נקבוביות בגודל כפול ושטח פנים אלקטרוכימי פעיל גבוה יותר.
בסגסוגת, הפוטנציאל הסטנדרטי של מבשרי מתכת משפיע על מידת התגובה שלהם במהלך אלקטרודפוזיציה. יוני Au ו- Ag מתמיסות נוזליות ?…
The authors have nothing to disclose.
עבודה זו נתמכה על ידי פרס של NIGMS (GM111835).
Argon gas compressed | Fisher Scientific Compay | ||
Bovine serum albumin (BSA) | Sigma-Aldrich (St.Louis, MO) | A9418 | > 98% purity |
Counter electrode (Platinum wire) | Alfa Aesar | 43288-BU | 0.5 mm diameter |
Digital Lab furnace | Barnstead Thermolyne 47,900 | F47915 | used for annealing at high temperatures |
Digital Potentiostat/galvanostat | EG&G Princeton Applied Research | 273A | PowerPULSE software |
Ethanol | Sigma-Aldrich (St.Louis, MO) | CAS-64-17-5 | HPLC/spectrophotometric grade |
Fetuin from fetal calf serum | Sigma-Aldrich (St.Louis, MO) | F2379 | lyophilized powder |
Gold wire roll | Electron Microscopy Sciences (Fort Washington, PA) | 73100 | 0.2 mm diameter, 10 ft, 99.9% |
Hydrochloric acid | Fisher Chemical | A144C-212 | 36.5-38% |
Hydrogen peroxide | Fisher Scientific (Pittsburg, PA) | CAS-7732-18-5 | 30% |
Kimwipes | KIMTECH Science brand, Kimberly-Clark professional | 34120 | 4.4 x 8.2 in |
Nitric acid | Fisher Scientific (Pittsburg, PA) | A2008-212 | trace metal grade |
Parafilm | Bemis PM996 | 13-374-10 | 4 IN. x 125 FT. |
Peroxidase from horseradish (HRP) | Sigma-Aldrich (St.Louis, MO) | 9003-99-0 | |
PharMed silicone tubing | Norton | AY242606 | 1/32" Inner Diameter, 5/32" Outer Diameter, 1/16" Wall Thickness, 25' Length |
Potassium dicyanoargentate | Sigma-Aldrich (St.Louis, MO) | 379166 | 99.96%, 10 G |
Potassium dicyanoaurate | Sigma-Aldrich (St.Louis, MO) | 389867 | 99.98%, 1 G |
PowerSuite software | EG&G Princeton Applied Research | comes with the instrument | |
PTFE tape | Fisherbrand | 15-078-261 | 1" wide 600" long |
Reference electrode (Ag/AgCl) | Princeton Applied Research | K0265 | |
Scanning Electron Microscopy (SEM) Apreo 2C | ThermoFisher scientific | APREO 2 SEM | equipped with Color SEM technology |
Simplicity UV system | Millipore corporation, Boston, MA, USA | SIMSV00WW | for generating Milli-Q water(18.2 MΩ cm at 25 °C) |
Sodium Borohydride | Sigma-Aldrich (St.Louis, MO) | 213462 | 100 G |
Sodium Carbonate | Sigma-Aldrich (St.Louis, MO) | 452882 | enzyme grade, >99%, 100 G |
Stir bar | Fisherbrand | 14-512-153 | 5 x 2 mm |
Sulphuric acid | Fisher Scientific (Pittsburg, PA) | A300C-212 | certified ACS plus |
Supracil quartz cuvette | Fisher Scientific (Pittsburg, PA) | 14-385-902C | 10 mm light path, volume capacity 1 mL |
UV-Visible Spectrophotometer | Varian Cary 50 |