Here, we present a protocol to place simplified volumetric models into noisy, complex, tomographic 3D volumes. This allows the fast segmentation of actin filament densities, detection of systematic filament bending and of gaps in hair bundle filaments, as well as convenient quantification of volumetric model properties, such as distances.
Efficient methods for the extraction of features of interest remain one of the biggest challenges for the interpretation of cryo-electron tomograms. Various automated approaches have been proposed, many of which work well for high-contrast datasets where the features of interest can be easily detected and are clearly separated from one another. Our inner ear stereocilia cryo-electron tomographic datasets are characterized by a dense array of hexagonally packed actin filaments that are frequently cross-connected. These features make automated segmentation very challenging, further aggravated by the high-noise environment of cryo-electron tomograms and the high complexity of the densely packed features. Using prior knowledge about the actin bundle organization, we have placed layers of a highly simplified ball-and-stick actin model to first obtain a global fit to the density map, followed by regional and local adjustments of the model. We show that volumetric model building not only allows us to deal with the high complexity, but also provides precise measurements and statistics about the actin bundle. Volumetric models also serve as anchoring points for local segmentation, such as in the case of the actin-actin cross connectors. Volumetric model building, particularly when further augmented by computer-based automated fitting approaches, can be a powerful alternative when conventional automated segmentation approaches are not successful.
Cryo-electron tomography allows entire organelles or parts of cells and tissues to be visualized at nanometer resolutions in their near-native state1,2,3 using either plunge-freezing4 or high-pressure freezing ultra-rapid vitrification5. Since only a limited electron dose can be tolerated by the cryo-preserved, unstained, frozen-hydrated sample, the tomographic 3D data is very noisy. This noise often can be significantly reduced by a variety of noise filtering algorithms6,7, including nonlinear anisotropic diffusion8, bilateral filtering9, and recursive median filtering10.
Furthermore, tilt limitations of the microscope stage, resulting in a missing wedge of information, and the fact that the specimen thickness increases at high tilt angles, lead to 3D reconstructions with anisotropic resolution. This means that the density is smeared out in the third dimension due to lower resolution in the Z-direction. As a result, the shape of macromolecules appears distorted (i.e., less well defined and elongated in the third dimension).
Among the biggest challenges in the interpretation of tomographic data is the automated extraction of the relevant features, also known as segmentation11. With sufficient unique shape features and low noise, macromolecular machines in complex 3D volumes can be identified by template matching12,13,14; however, the success of template matching depends on tomogram resolution, a suitable search model, as well size and shape characteristics of the feature volumes. If the features of interest are sufficiently spaced apart and repeating motifs (such as large macromolecular machines) can readily be identified, tomogram subvolumes can be combined to increase the signal-to-noise ratio and to average out individual particle shape distortions. Automated segmentation of an actin filament network in electron tomograms of the thin edge of frozen-hydrated Dictyostelium discoideum cells by template matching has been reported15.
However, if features of interest are closely spaced, the data resolution anisotropy can lead to a smearing out of the map densities in the Z-direction (along the direction of the electron beam), resulting in an apparent merging of the density envelope of closely spaced macromolecular machines or supramolecular complexes. In such cases, automated approaches for segmentation, such as watershed16, boundary segmentation17, or a variety of machine learning-based classification approaches18,19, may not be able to recognize the features of interest or establish a correct boundary around an object of interest. Often, one ends up with either a few very large pieces or with a heavily over-segmented volume, where much effort is needed to merge many small pieces until the feature of interest is perceived to be complete. Such manual curation of segmentation results can be very labor-intensive and may even fail altogether when the structure of interest is an array of closely spaced filaments that are interconnected via short linkers. In this gigantic network of filamentous structures, it can be difficult to orient oneself. This is because, due to resolution anisotropy, densities appear to blend into one another, presenting a formidable challenge for both automated as well as for interactive manual segmentation approaches. As a consequence, one can easily "jump" between filaments when only visually inspecting small regions.
Fortunately, in the case of the actin bundle in inner ear hair cell stereocilia, we have knowledge about the overall actin bundle organization and the directionality of the actin filaments20,21. The actin bundle consists of hundreds of hexagonally, densely-packed actin filaments 6-8 nm in diameter, which are spaced about 12-13 nm apart from one another22.
This allowed us to take a rather different approach to segmentation that is based on simplified ball-and-stick models to represent actin filaments. The strategy involved simultaneously placing an idealized regular array of filament models into slabs of the cryo-electron tomography density maps to build up a 3D model of the actin bundle layer by layer. We ensured that the model had a general overall fit to the density map before making local adjustments to individual filament models or groups of filament models to closely match the density map. By automatic color-coding of the map density value at the filament model location, we were able to easily detect apparent gaps in the actin bundle. Volumetric models allow a quantitative analysis of volumetric properties, such as distances between actin filaments, and also lead to a simplified display of the overall 3D filamentous network organization.
In addition, models can also serve as anchoring structures for the segmentation of additional features, such as actin-actin linkers, as (portions of) individual filament models can be selected, around which appropriate radius map density zones can be generated for inspection and further segmentation.
We believe that our volumetric model-based segmentation approach is particularly useful for large filamentous structure networks that may contain gaps and inter-filament cross-connections. Segmentation algorithms tend to operate locally, whereas the human brain takes larger areas into consideration, and thus is superior to computers when it comes to recognizing filament structures, even in a complex, high-noise environment.
We have shown that automated approaches for segmentation, such as watershed segmentation, can fail in the high-noise and high-complexity environment of hair cell stereocilia cryo-electron tomograms. Distinguishing which part of this filamentous network represents actin filaments and what constitutes crosslinks on a local environment level seems challenging at best when just inspecting small tomographic subvolumes. The model building approach used in this study benefits from prior knowledge of the large-scale order of the actin bundle, which helps in developing an expectation about the orientation of actin filaments and the crosslinker densities. Perhaps even more significant is that a human brain can easily find patterns by considering the larger context beyond the local density distribution, whereas a computer algorithm only works for a relatively small region that is considered by the algorithm; hence, larger-scale trends cannot easily be taken into consideration. By fitting a model globally to a layer of density, we avoided the confusion that can occur when attempting to create a model for small portions of single actin filaments at a time. Of course, such global fitting assumes an order that extends over large distances. However, since we had an unexpected small but significant gradual bending of the actin filaments, the global fit was only an initial approximation, and required local adjustments of the model to fit the density map. Since the initial model was a good starting point, the adjustments could be made with high confidence. One big advantage of our approach was that we could choose to display only a defined zone of density, which helped to reduce the complexity of the scenery. Furthermore, viewing of the map density slab along the filament model axis helped to identify the unexpected curvature, which we would have most likely missed when simply displaying smaller subvolumes. Placement of the initial model also facilitated quick zooming in and out, to alternate between an overall view of the respective layer of actin filaments and the detailed views to make model adjustments.
The critical steps within the protocol included the rotation of the map after visual inspection, the creation and placement of the model into the density map, as well as the division of the filament model into smaller segments. The atom position of the segments could then be spatially adjusted to fit the density map, and/or color-coded to detect gaps.
This approach of actin model building can also be modified by placing a set of "atoms" (i.e., the balls of the ball-and-stick model) into filament densities by using a cross-sectional view of a 10-30 slice/9.47-28.4 nm averaged slab of density, which then can be connected by bonds (i.e., the sticks of the ball-and-stick model). We have used this approach, which is a modification from the protocol described here in detail, for the volumetric model building in the taper region of hair cell stereocilia23. Furthermore, as we have described here, our volumetric model building approach is also well suited for the segmentation and model building of membranes.
While volumetric model building can be applied to any density map that shows filamentous features, the technique we have described here is most efficient when we have an array of regularly spaced filaments, for which a global fit of a volumetric model can be obtained. It also depends on the filamentous features to alter their directionality in a gradual manner. If there are sudden kinks and sharp turns in the filamentous structures, our approach may not be particularly helpful for segmentation.
In the meantime, our collaborators have developed an automated approach for automated filament tracing that follows a similar concept used here for manual segmentation30,31. Going forward, the best approach may well be a hybrid of manual identification and placement of an initial sparse model (even only a few balls) into the density as a starting point, and then letting a search and fitting algorithm finish the tracing of the filaments.
Simplified volumetric models reduce the complexity of a system and allows certain patterns, such as actin filament bending near the tip, to be better appreciated. Also, the volumetric model can be used as an "anchor" to display a zone of density around the chosen anchoring ball-and-stick model, which allows the detection and visualization of crosslinker densities between adjacent actin filaments. The ability to select individual filaments and to set appropriate radii as a zone in which density is displayed again allows the overwhelming complexity of the scenery to be reduced to a manageable level.
One advantage of this volumetric model building approach of global fitting, followed by local adjustments, was that we were able to identify regions where actin filaments appeared to be interrupted, and significant gaps in actin filaments were indicated by the absence of map density. Since we had placed a volumetric ball-and-stick model, we could make use of a routine in the UCSF Chimera software package that color-codes each model ball position according to the map density value at that location. This approach allowed a fast detection and visualization of actin filament gaps in the actin bundle, which is a biologically significant feature we found in our cryo-electron tomogram, and which would have been very difficult to detect and visualize with traditional segmentation approaches. Yet another advantage of our volumetric model is that volumetric properties including lengths and distances can be easily obtained, which allows for actual numbers and thus a statistical analysis to be performed.
In summary, interactive manual model point placement, possibly further augmented by subsequent automated local fitting and filament tracing capabilities, is a rather promising approach for the visualization and quantitative analysis of electron tomographic subcellular volumes. This is because it uses the power of the human brain for pattern recognition and the power of computer science for model optimization.
The authors have nothing to disclose.
We would like to thank Dr. Peter Barr-Gillespie and his team for their role in sample preparation and former members of the Auer lab and the Dr. Dorit Hanein lab for their role in tomographic data collection. We would also like to thank Tom Goddard of UCSF Resource for Biocomputing, Visualization, and Informatics (RBVI) for providing various UCSF Chimera scripts.
Chimera | RBVI | Version 1.16 https://www.cgl.ucsf.edu/chimera/download.html |
|
Chimera | RBVI | Version 1.16 https://www.cgl.ucsf.edu/chimera/cgi-bin/secure/chimera-get.py?file=win64/chimera-1.16-win64.exe |
|
Chimera | RBVI | Version 1.16 https://www.cgl.ucsf.edu/chimera/cgi-bin/secure/chimera-get.py?file=mac64/chimera-1.16-mac64.dmg |
|
Chimera | RBVI | Version 1.16 https://www.cgl.ucsf.edu/chimera/cgi-bin/secure/chimera-get.py?file=linux_x86_64/chimera-1.16-linux_x86_64.bin |
|
Excel | Microsoft | Version 2211 https://www.office.com/?auth=1 |
|
Falcon II | Thermofisher | https://www.thermofisher.com/de/de/home/electron-microscopy/products/accessories-em/falcon-detector.html | |
IMOD | University of Colorado | Version 4.11.1 https://bio3d.colorado.edu/imod/download.html |
|
PC Desktop | Intel | Windows 10, ver. 22H2 | |
PC Laptop | Gigabyte | Windows 10, ver. 22H2 | |
Powerpoint | Microsoft | Version 2211 https://www.office.com/?auth=1 |
|
Titan Krios Electron Microscope | Thermofisher | https://www.thermofisher.com/de/de/home/electron-microscopy/products/transmission-electron-microscopes/krios-g4-cryo-tem.html | |
Word | Microsoft | Version 2211 https://www.office.com/?auth=1 |
.