Summary

使用系绳上的锍中心构建环肽

Published: September 28, 2022
doi:

Summary

该协议介绍了通过半胱氨酸和蛋氨酸之间的双烷基化以及由炔丙基锍中心触发的简单硫醇 – 炔反应 合成 环肽。

Abstract

近年来,环肽因其优异的生物活性而在药物发现领域受到越来越多的关注,因此,它们现在被临床使用。因此,寻求合成环肽的有效策略以促进其在药物发现领域的应用至关重要。本文报告了使用树脂上或分子内(分子间)联烷基化高效合成环肽的详细方案。使用该协议,利用固相肽合成,半胱氨酸(Cys)和蛋氨酸(Met)同时偶联在树脂上,从而合成线性肽。此外,使用可调系绳和系绳上的锍中心通过Met和Cys之间的联烷基化合成环肽。整个合成路线可分为三个主要过程:Cys在树脂上的脱保护,接头的偶联以及Cys与Met在三氟乙酸(TFA)裂解溶液中的环化。此外,受锍中心反应性的启发,炔丙基连接到Met上以触发硫醇-炔基加成并形成环肽。之后,将粗肽干燥并溶解在乙腈中,分离,然后通过高效液相色谱(HPLC)纯化。采用液相色谱-质谱联用(LC-MS)确认了环肽的分子量,并利用HPLC进一步确认了环肽与还原剂组合的稳定性。此外,通过1 H核磁共振(1H NMR)波谱分析了环肽中的化学位移。总体而言,该协议旨在建立合成环肽的有效策略。

Introduction

蛋白质-蛋白质相互作用(PPI)1在药物研发中起着关键作用。通过化学方法构建具有固定构象的稳定肽是开发PPIs模拟基序的最重要方法之一2。迄今为止,已经开发了几种靶向PPI的环肽用于临床3。大多数肽被限制在α螺旋构象中,以降低构象熵并改善代谢稳定性、靶标结合亲和力和细胞通透性45。在过去的20年中,Cys67,赖氨酸89,色氨酸10,精氨酸11和Met 1213的侧链已入到非天然氨基酸中以将肽固定成环状构象。这种环肽可以靶向独特的化学空间或特殊位点,从而触发共价反应以形成蛋白质-肽共价结合14,151617在Yu等人最近的一份报告中,氯乙酰胺被锚定在肽配体结构域上,确保具有出色蛋白质特异性的共价偶联反应18。此外,Walensky等人将丙烯酰胺和芳基磺酰氟(ArSO2F)等亲电弹头进一步掺入肽中19,形成稳定的肽共价抑制剂,提高肽抑制剂的抗肿瘤作用。因此,引入额外的官能团以共价修饰蛋白质-肽配体20是非常重要的。这些基团不仅与侧链上的蛋白质反应,而且还稳定肽21的二级结构。然而,由于复杂的合成路线和化学基团2223的非特异性结合由肽配体诱导的共价修饰蛋白的应用受到限制。因此,迫切需要合成环肽的有效策略。

受环肽2242526的多种策略的启发该协议试图开发一种简单有效的稳定肽的方法。此外,我们注意到稳定肽的侧链基团在空间上接近肽配体时可以与目标蛋白共价反应。2013年,戴明小组通过开发一种生产选择性修饰肽蛋氨酸27的新方法,填补了化学修饰Met的缺乏。基于这一背景,Shi等人重点研究了侧链闭环形成锍盐中心的发展。当肽配体与靶蛋白结合时,锍盐基团与空间接近的Cys蛋白共价反应。近年来,Shi等人设计了一种稳定环肽28的新方法。环肽上的锍盐被具有巯基的还原剂还原,该还原剂可逆地还原为Met。然而,该反应效率低,对后续的生物学应用研究有害。在目前的研究中,设计了Met-Cys和丙炔基溴-Cys闭环反应,在环肽的侧链上保留单个锍盐。锍盐充当了一种新的弹头,在空间接近下与蛋白质Cys共价反应。简而言之,Cys和Met突变的肽通过分子内烷基化环化,导致系绳上锍中心的产生。在这个过程中,侧链桥的形成对环肽至关重要。总体而言,该协议描述了使用简单的反应条件和操作实现的详细基于锍的肽环化。目的是为进一步广泛的生物学应用开发一种潜在的方法。

Protocol

1. 设备准备 注意:吗啉、N,N-二甲基甲酰胺 (DMF)、二氯甲烷 (DCM)、N,N-二异丙基乙胺 (DIPEA)、TFA、吗啉、哌啶、乙醚和甲醇有毒、易挥发和腐蚀性。这些试剂会通过吸入、摄入或皮肤接触对人体造成伤害。对于所有化学实验,请使用防护设备,包括一次性手套、实验外套和防护眼镜。 通过标准手动Fmoc固相肽合成(SPPS)29在Rink-?…

Representative Results

所有线性肽均在Rink-amide MBHA树脂上通过标准手工Fmoc固相合成合成。如图5A所述构建环状六肽(Ac(环I)-wmaaac-nh2)模型。值得注意的是,通过Met烷基化产生了一个新的系绳手性中心,反相HPLC确认了环肽的两种差向异构体(Ia,Ib)。此外,使用反相HPLC的积分测定差向异构体的转化率和比例。由六肽Ac-WMAAAC-NH2产生的环AC-(环I)-WMAAAC-NH2肽1-Ia和1-Ib表现?…

Discussion

本文描述的合成方法提供了一种在肽序列中使用Cys和Met合成环肽的方法,其中基本线性肽通过常见的固相肽合成技术构建。对于Cys和Met之间环肽的双烷基化,整个合成路线可分为三个主要过程:Cys在树脂上的脱保护,接头的偶联以及Cys和Met在三氟乙酸裂解溶液中的环化。值得注意的是,Cys保护基团的去除被发现是随后闭环反应的关键步骤。因此,trt-Cys被去保护,直到溶液没有明显的黄色。进一步…

Disclosures

The authors have nothing to disclose.

Acknowledgements

感谢国家重点研发计划(2021YFC2103900)的资金支持;中国自然科学基金(21778009和21977010);广东省自然科学基金(2022A1515010996、2020A1515010521):深圳市科技创新委员会(RCJC20200714114433053、JCYJ201805081522131455、JCYJ20200109140406047);以及深港脑科学研究所-深圳基本科研机构资助(2019SHIBS0004)。作者感谢 化学科学, 皇家化学学会的期刊支持参考文献30和美国化学学会有机 化学杂志参考文献31。

Materials

1,3-bis(bromomethyl)-benzen Energy D0215
1,3-Dimethylbarbituric acid Energy A46873
1H NMR and HSQC Bruker  AVANCE-III 400
1-Hydroxybenzotriazole hydrate Energy E020543
2-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU) Energy A1797
2-mercaptopyridine Energy Y31130
6-Aminocaproic acid Energy A010678
Acetic anhydride Energy A01021454
Acetonitrile Aldrich 9758
Ammonium carbonate Energy 12980
Dichloromethane (DCM) Energy W330229
Digital Heating Cooling Drybath  Thermo Scientific 88880029
Diisopropylethylamine (DIPEA) Energy W320014
Dimethyl formamide (DMF) Energy B020051
Dithiothreitol Energy A10027
Electrospray Ionization Mass SHIMADZU2020  LC-MS2020
Fmoc-Ala-OH Nanjing Peptide Biotech Ltd R30101
Fmoc-Arg(Pbf)-OH Nanjing Peptide Biotech Ltd R30201
Fmoc-Cys(Trt)-OH Nanjing Peptide Biotech Ltd R30501
Fmoc-Gln(Trt)-OH Nanjing Peptide Biotech Ltd R30601
Fmoc-Glu(OtBu)-OH Nanjing Peptide Biotech Ltd R30701
Fmoc-His(Boc)-OH Nanjing Peptide Biotech Ltd R30902
Fmoc-Ile-OH Nanjing Peptide Biotech Ltd R31001
Fmoc-Lys(Boc)-OH Nanjing Peptide Biotech Ltd R31201
Fmoc-Met-OH Nanjing Peptide Biotech Ltd R31301
Fmoc-Pro-OH Nanjing Peptide Biotech Ltd R31501
Fmoc-Ser(tBu)-OH Nanjing Peptide Biotech Ltd R31601
Fmoc-Thr(tBu)-OH Nanjing Peptide Biotech Ltd R31701
Fmoc-Trp(Boc)-OH Nanjing Peptide Biotech Ltd R31801
Fmoc-Tyr(tBu)-OH Nanjing Peptide Biotech Ltd R31901
Fmoc-Val-OH Nanjing Peptide Biotech Ltd R32001
Formic acid Energy W810042
High Performance Liquid
Chromatography
SHIMADZU LC-2030
Methanol Aldrich 9758
Morpholine Aldrich M109062
N,N'-Diisopropylcarbodiimide Energy B010023
Ninhydrin Reagent Energy N7285
Propargyl bromide Energy W320293
Rink Amide MBHA resin Nanjing Peptide Biotech Ltd.
Solid Phase Extraction (SPE) Sample Collection Plates  Thermo Scientific 60300-403
Tetrakis(triphenylphosphine) palladium Energy T1350
Three-way stopcocks Bio-Rad 7328107
Triethylamine Energy B010737
Trifluoroacetic acid (TFA) J&K 101398
Triisopropylsilane (TIS) Energy T1533

References

  1. Arkin, M. R., Tang, Y. Y., Wells, J. A. Small-molecule inhibitors of protein-protein interactions: Progressing toward the reality. Chemistry Biology. 21 (9), 1102-1114 (2014).
  2. Shi, X. D., et al. Reversible stapling of unprotected peptides via chemoselective methionine bis-alkylation/dealkylation. Chemical Science. 9 (12), 3227-3232 (2018).
  3. Muttenthaler, M., King, G. F., Adams, D. J., Alewood, P. F. Trends in peptide drug discovery. Nature Reviews Drug Discovery. 20 (4), 309-325 (2021).
  4. White, C. J., Yudin, A. K. Contemporary strategies for peptide macrocyclization. Nature Chemistry. 3 (7), 509-524 (2011).
  5. Victoria, G. G., Reddy, S. R. Recent advances in the synthesis of organic chloramines and their insights into health care. New Journal of Chemistry. 45, 8386-8408 (2021).
  6. Kim, J. I., et al. Conformation and stereoselective reduction of hapten side chains in the antibody combining site. Journal of the American Chemical Society. 113 (24), 9392-9394 (1991).
  7. Waddington, M. A., et al. An organometallic strategy for cysteine borylation. Journal of the American Chemical Society. 143 (23), 8661-8668 (2021).
  8. Luong, H. X., Bui, H. T. P., Tung, T. T. Application of the all-hydrocarbon stapling technique in the design of membrane-active peptides. Journal of Medicinal Chemistry. 65 (4), 3026-3045 (2022).
  9. Góngora-Benítez, M., Tulla-Puche, J., Albericio, F. Multifaceted roles of disulfide bonds. peptides as therapeutics. Chemical Reviews. 114 (2), 901-926 (2014).
  10. Li, B., et al. Cooperative stapling of native peptides at lysine and tyrosine or arginine with formaldehyde. Angewandte Chemie International Edition. 60 (12), 6646-6652 (2021).
  11. Blaum, B. S., et al. Lysine and arginine side chains in glycosaminoglycan-protein complexes investigated by NMR, cross-Linking, and mass spectrometry: a case study of the factor h-heparin Interaction. Journal of the American Chemical Society. 132 (18), 6374-6381 (2010).
  12. Petitdemange, R., et al. Selective tuning of elastin-like polypeptide properties via methionine oxidation. Biomacromolecules. 18 (2), 544-550 (2016).
  13. Kadlcik, V., et al. Reductive modification of a methionine residue in the amyloid-beta peptide. Angewandte Chemie International Edition. 45 (16), 259 (2006).
  14. Reguera, L., Rivera, D. G. Multicomponent reaction toolbox for peptide macrocyclization and stapling. Chemical Reviews. 119 (17), 9836-9860 (2019).
  15. Reddy, C. B. R., et al. Antiviral activity of 3-(1-chloropiperidin-4-yl)-6-fluoro benzisoxazole 2 against white spot syndrome virus in freshwater crab, Paratelphusa hydrodomous. Aquaculture Research. 47 (8), 2677-2681 (2015).
  16. Embaby, A. M., Schoffelen, S., Kofoed, C., Meldal, M., Diness, F. Rational tuning of fluorobenzene probes for cysteine-selective protein modification. Angewandte Chemie International Edition. 57 (27), 8022-8026 (2018).
  17. Jiang, H. F., Chen, W. J., Wang, J., Zhang, R. S. Selective N-terminal modification of peptides and proteins: recent progresses and applications. Chinese Chemical Letters. 33 (1), 80-88 (2022).
  18. Yu, Y., et al. PDZ-reactive peptide activates ephrin-B reverse signaling and inhibits neuronal chemotaxis. ACS Chemical Biology. 11 (1), 149-158 (2016).
  19. Huhn, A. J., Guerra, R. M., Harvey, E. P., Bird, G. H., Walensky, L. D. Selective covalent targeting of anti-apoptotic BFL-1 by cysteine-reactive stapled peptide inhibitors. Cell Chemical Biology. 23 (9), 1123-1134 (2016).
  20. Chow, H. Y., Zhang, Y., Matheson, E., Li, X. C. Ligation technologies for the synthesis of cyclic peptides. Chemical Reviews. 119 (17), 9971-10001 (2019).
  21. Zhang, H. Y., Chen, S. Y. Cyclic peptide drugs approved in the last two decades (2001-2021). RSC Chemical Biology. 3 (1), 18-31 (2021).
  22. Lee, Y. J., Han, S. H., Lim, Y. B. Simultaneous stabilization and multimerization of a peptide alpha-helix by stapling polymerization. Macromolecular Rapid Communications. 37 (13), 1021-1026 (2016).
  23. Karthikeyan, K., et al. Anti-viral activity of methyl 1-chloro-7-methyl-2-propyl-1h-benzo[d] imidazole-5-carboxylate against white spot syndrome virus in freshwater crab (Paratelphusa hydrodromous). Aquaculture International. 30, 989-998 (2022).
  24. Zhao, H., et al. Crosslinked aspartic acids as helix-nucleating templates. Angewandte Chemie International Edition. 55 (39), 12088-12093 (2016).
  25. Hu, K., et al. An in-tether chiral center modulates the helicity, cell permeability, and target binding affinity of a peptide. Angewandte Chemie International Edition. 55 (28), 8013-8017 (2016).
  26. Hu, K., Sun, C., Li, Z. Reversible and versatile on-tether modification of chiral-center-induced helical peptides. Bioconjugate Chemistry. 28 (7), 2001-2007 (2017).
  27. Kramer, J. R., Deming, T. J. Reversible chemoselective tagging and functionalization of methionine containing peptides. Chemical Communications. 49 (45), 5144-5146 (2013).
  28. Shi, X. D., et al. Reversible stapling of unprotected peptides via chemoselective methionine bisalkylation/dealkylation. Chemical Science. 9 (12), 3227-3232 (2018).
  29. Merrifield, B. Solid phase synthesis. Nobel lecture, 8 December 1984. Bioscience Reports. 5 (5), 353-376 (1985).
  30. Wang, D. Y., et al. A sulfonium tethered peptide ligand rapidly and selectively modifies protein cysteine in vicinity. Chemical Science. 10 (19), 4966-4972 (2019).
  31. Hou, Z. F., et al. A sulfonium triggered thiol-yne reaction for cysteine modification. The Journal of Organic Chemistry. 85 (3), 1698-1705 (2020).
  32. Reguera, L., Rivera, D. G. Multicomponent reaction toolbox for peptide macrocyclization and stapling. Chemical Reviews. 119 (17), 9836-9860 (2019).
check_url/cn/64289?article_type=t

Play Video

Cite This Article
Song, C., Hou, Z., Jiao, Z., Liu, Z., Lian, C., Zhang, M., Liang, W., Yin, F., Li, Z. Constructing Cyclic Peptides Using an On-Tether Sulfonium Center. J. Vis. Exp. (187), e64289, doi:10.3791/64289 (2022).

View Video