Summary

使用三电极系统评估超级电容器的电化学性质

Published: January 07, 2022
doi:

Summary

该协议描述了使用带有恒电位仪装置的三电极系统评估超级电容器的各种电化学性质。

Abstract

三电极系统是研究材料级储能系统电化学性能和特性的基本和通用分析平台。超级电容器是过去十年中发展起来的最重要的新兴储能系统之一。在这里,使用带有恒电位仪装置的三电极系统评估了超级电容器的电化学性能。三电极系统由工作电极(WE),参比电极(RE)和对电极(CE)组成。WE是控制电位和测量电流的电极,是研究的目标。RE用作测量和控制系统电位的参考,CE用于完成闭合电路以实现电化学测量。该系统通过循环伏安(CV)、恒电流充放电(GCD)和电化学阻抗谱(EIS)为评估电化学参数(如比电容、稳定性和阻抗)提供了准确的分析结果。通过使用带有恒电位仪装置的三电极系统来评估超级电容器的电化学性能时,通过控制序列的参数值,提出了几种实验设计方案。通过这些方案,研究人员可以建立一个三电极系统,以获得合理的电化学结果,用于评估超级电容器的性能。

Introduction

超级电容器作为适合微电子器件、电动汽车(EV)和固定式储能系统等各种应用的电源,引起了极大的关注。在电动汽车应用中,超级电容器可用于快速加速,并且可以在减速和制动过程中存储再生能量。在可再生能源领域,如太阳能发电1和风力发电2,超级电容器可以用作固定储能系统34。可再生能源的产生受到这些能源供应的波动和间歇性的限制;因此,需要一个能够在不规则发电期间立即响应的储能系统5。超级电容器通过与锂离子电池不同的机制来储存能量,具有高功率密度,稳定的循环性能和快速充电放电6。根据存储机制的不同,超级电容器可以分为双层电容器(EDLC)和伪电容器7。EDLC在电极表面积聚静电荷。因此,电容由电荷量决定,电荷量受电极材料的表面积和多孔结构的影响。相比之下,由导电聚合物和金属氧化物材料组成的赝电容器通过法拉第反应过程储存电荷。超级电容器的各种电化学性能与电极材料有关,开发新的电极材料是提高超级电容器性能的主要问题8。因此,评估这些新材料或系统的电化学性质对于研究和在现实生活中的进一步应用非常重要。在这方面,使用三电极系统的电化学评估是储能系统910,111213实验室规模研究中最基本和最广泛使用的方法。

三电极系统是评估超级电容器14的电化学性质(例如比电容,电阻,电导率和循环寿命)的简单而可靠的方法。该系统提供了能够分析单个材料15的电化学特性的优点,这与双电极系统相反,其中的特性可以通过对给定材料的分析来研究。双电极系统仅提供有关两个电极之间反应的信息。它适用于分析整个储能系统的电化学性质。电极的电位不是固定的。因此,不知道反应发生在什么电压下。然而,三电极系统仅分析一个具有固定电位的电极,可以对单个电极进行详细分析。因此,该系统旨在分析材料层面的特定性能。三电极系统由工作电极(WE)、参比电极(RE)和对电极(CE)1617组成。WE是研究的目标,评估,因为它执行感兴趣的电化学反应18 ,并且由潜在感兴趣的氧化还原材料组成。就EDLC而言,使用高表面积材料是主要问题。因此,具有高比表面积和微孔的多孔材料,如多孔碳,石墨烯和纳米管,优选1920。活性炭是EDLC最常见的材料,因为它具有高比面积(>1000 m2 / g)和许多微孔。伪电容器是用可以发生法拉第反应21的材料制造的。金属氧化物(RuOx,MnOx等)和导电聚合物(PANI,PPy等)常用22。RE和CE用于分析WE的电化学性质。RE用作测量和控制系统电位的参考;通常选择正常的氢电极(NHE)和Ag / AgCl(饱和KCl)作为RE23。CE与WE配对并完成电路以允许电荷转移。对于CE,使用电化学惰性材料,例如铂(Pt)和金(Au)24。三电极系统的所有组件都连接到恒电位仪器件,该器件控制整个电路的电位。

循环伏安法 (CV)、恒电流充放电 (GCD) 和电化学阻抗谱 (EIS) 是使用三电极系统的典型分析方法。可以使用这些方法评估超级电容器的各种电化学特性。CV是用于研究材料在重复氧化还原过程中的电化学行为(电子转移系数,可逆或不可逆等)和电容性质的基本电化学方法1424。CV图显示了与材料的还原和氧化相关的氧化还原峰。通过这些信息,研究人员可以评估电极性能,并确定材料被还原和氧化的电位。此外,通过CV分析,可以确定材料或电极可以储存的电荷量。总电荷是电位的函数,电容可以很容易地计算出618。电容是超级电容器的主要问题。电容越高,表示能够存储更多电荷。EDLC产生具有线性线的矩形CV图案,因此可以轻松计算电极的电容。伪电容器在矩形图中呈现氧化还原峰。基于这些信息,研究人员可以使用CV测量来评估材料的电化学性质18

GCD是识别电极循环稳定性的常用方法。对于长期使用,应在恒定电流密度下验证循环稳定性。每个循环由充放电步骤14组成。研究人员可以通过充放电图的变化、比电容保持和库伦效率来确定循环稳定性。EDLC产生线性模式;因此,电极的比电容可以很容易地利用放电曲线6的斜率来计算。然而,伪电容器表现出非线性模式。放电斜率在放电过程中变化7。此外,可以通过电流电阻(IR)下降来分析内阻,这是由于电阻625引起的潜在下降。

EIS是一种有用的方法,用于在不破坏样品26的情况下识别储能系统的阻抗。阻抗可以通过施加正弦电压并确定相位角14来计算。阻抗也是频率的函数。因此,EIS频谱是在一定频率范围内采集的。在高频下,内阻和电荷转移等动力学因素可工作2427。在低频下,可以检测到扩散因子和Warburg阻抗,这与传质和热力学2427有关。EIS是一种强大的工具,用于同时分析材料的动力学和热力学特性28。本研究描述了使用三电极系统评估超级电容器电化学性能的分析方案。

Protocol

1. 电极和超级电容器的制造(图1) 在电化学分析之前,通过将80重量(wt)%的电极活性材料(0.8g活性炭),10重量%的导电材料(0.1g炭黑)和10重量%的粘合剂(0.1g聚四氟乙烯(PTFE))组合来制备电极。 将异丙醇(IPA;0.1-0.2 mL)滴入上述混合物中,然后用滚筒将混合物薄薄地铺入面团中。 在将电极连接到不锈钢(SUS)?…

Representative Results

电极根据协议步骤1制造(图1)。将薄而均匀的电极连接到SUS网上,尺寸为1 cm2 ,厚度为0.1~0.2 mm。干燥后,得到纯电极的重量。将电极浸入2 M H2SO4 水电解质中,并且在电化学分析之前允许电解质充分渗透电极。电化学测量的生产顺序和系统设置根据协议步骤2和3进行(图2 – 图5)。系统中使用的玻璃容器<s…

Discussion

本研究为使用带有恒电位仪装置的三电极系统进行各种分析提供了方案。该系统广泛用于评估超级电容器的电化学性能。每个分析的合适序列(CV、GCD 和 EIS)对于获得优化的电化学数据非常重要。与具有简单设置的双电极系统相比,该三电极系统专门用于在材料水平15上分析超级电容器。然而,选择适当的实验参数,如电解质42、电位范围43、…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了韩国能源技术评估与规划研究所(KETEP)和大韩民国贸易,工业与能源部(MOTIE)(第20214000000280号)以及2021年中央大学研究生研究奖学金的支持。

Materials

Activated carbon GS Active material
Ag/AgCl electrode BASi RE-5B Reference electrode
Carbon black Hyundai Conductive material
Desicator Navimro
Electrode pressing machine Rotech
Extractor WonA Tech Convert program (raw data to excel form)
Isopropanol(IPA) Samchun I0346 Solvent to melt the binder
Polytetrafluoroethylene(PTFE) Hyundai Binder
Potentiostat WonA Tech Zive SP1
Pt electrode BASi MW-018122017 Counter electrode
Reaction flask Duran Container for electrolyte
SM6 WonA Tech Program of setting sequence and measuring electrochemical result
Sulfuric acid Samshun S1423 Electrolyte
SUS mesh Navimro Current collector
Teflon cap WonA Tech Cap of the electrolyte continer
Zman WonA Tech EIS program

References

  1. El-Kady, M. F., et al. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proceedings of the National Academy of Sciences. 112 (14), 4233 (2015).
  2. Gee, A. M., Robinson, F. V. P., Dunn, R. W. Analysis of Battery Lifetime Extension in a Small-Scale Wind-Energy System Using Supercapacitors. IEEE Transactions on Energy Conversion. 28 (1), 24-33 (2013).
  3. Zhang, Z., et al. A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle. Applied Energy. 178, 177-188 (2016).
  4. Libich, J., Máca, J., Vondrák, J., Čech, O., Sedlaříková, M. Supercapacitors: Properties and Applications. Journal of Energy Storage. 17, 224-227 (2018).
  5. Cheng, Y. Super capacitor applications for renewable energy generation and control in smart grids. 2011 IEEE International Symposium on Industrial Electronics. , 1131-1136 (2011).
  6. Mathis, T. S., et al. Energy Storage Data Reporting in Perspective-Guidelines for Interpreting the Performance of Electrochemical Energy Storage Systems. Advanced Energy Materials. 9 (39), 1902007 (2019).
  7. González, A., Goikolea, E., Barrena, J. A., Mysyk, R. Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews. 58, 1189-1206 (2016).
  8. Yang, L., et al. Emergence of melanin-inspired supercapacitors. Nano Today. 37, 101075 (2021).
  9. Hendel, S. J., Young, E. R. Introduction to Electrochemistry and the Use of Electrochemistry to Synthesize and Evaluate Catalysts for Water Oxidation and Reduction. Journal of Chemical Education. 93 (11), 1951-1956 (2016).
  10. Licht, F., Aleman Milán, G., Andreas, H. A. Bringing Real-World Energy-Storage Research into a Second-Year Physical-Chemistry Lab Using a MnO2-Based Supercapacitor. Journal of Chemical Education. 95 (11), 2028-2033 (2018).
  11. Jakubowska, A. A Student-Constructed Galvanic Cell for the Measurement of Cell Potentials at Different Temperatures. Journal of Chemical Education. 93 (5), 915-919 (2016).
  12. González-Flores, D., Montero, M. L. An Advanced Experiment for Studying Electron Transfer and Charge Storage on Surfaces Modified with Metallic Complexes. Journal of Chemical Education. 90 (8), 1077-1081 (2013).
  13. Da Silva, L. M., et al. Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porous electrode materials. Energy Storage Materials. 27, 555-590 (2020).
  14. Choudhary, Y. S., Jothi, L., Nageswaran, G. . Electrochemical Characterization. Spectroscopic Methods for Nanomaterials Characterization. , 19-54 (2017).
  15. Girard, H. -. L., Dunn, B., Pilon, L. Simulations and Interpretation of Three-Electrode Cyclic Voltammograms of Pseudocapacitive Electrodes. Electrochimica Acta. 211, 420-429 (2016).
  16. Bard, A. J., Inzelt, G., Scholz, F. . Electrochemical Dictionary. , (2012).
  17. Bard, A. J., Faulkner, L. R. . Electrochemical methods: fundamentals and applications. , (2000).
  18. Elgrishi, N., et al. A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education. 95 (2), 197-206 (2018).
  19. Shiraishi, S., Tanaike, O. Application of Carbon Materials Derived from Fluorocarbons in an Electrochemical Capacitor. Advanced Fluoride-Based Materials for Energy Conversion. , 415-430 (2015).
  20. Inagaki, M., Kang, F. . Materials Science and Engineering of Carbon: Fundamentals. , (2014).
  21. Fleischmann, S., et al. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chemical Reviews. 120 (14), 6738-6782 (2020).
  22. Miao, Y. -. E., Liu, T. . Electrospinning: Nanofabrication and Applications. , 641-669 (2019).
  23. Yin, J., Qi, L., Wang, H. Antifreezing Ag/AgCl reference electrodes: Fabrication and applications. Journal of Electroanalytical Chemistry. 666, 25-31 (2012).
  24. Bard, A. J., Faulkner, L. R. . Electrochemical Methods: Fundamentals and Applications. , (2001).
  25. Wang, W., et al. Electrochemical cells for medium- and large-scale energy storage: fundamentals. Advances in Batteries for Medium and Large-Scale Energy Storage. , 3-28 (2015).
  26. Mansfeld, F. Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings. Journal of Applied Electrochemistry. 25 (3), 187-202 (1995).
  27. Murbach, M. D., Hu, V. W., Schwartz, D. T. Nonlinear Electrochemical Impedance Spectroscopy of Lithium-Ion Batteries: Experimental Approach, Analysis, and Initial Findings. Journal of The Electrochemical Society. 165 (11), 2758-2765 (2018).
  28. Macdonald, J. R., Johnson, W. B. . Impedance Spectroscopy. , 1-26 (2005).
  29. Chen, S. . Handbook of Electrochemistry. , 3-56 (2007).
  30. Xi, S., Zhu, Y., Yang, Y., Jiang, S., Tang, Z. Facile Synthesis of Free-Standing NiO/MnO2 Core-Shell Nanoflakes on Carbon Cloth for Flexible Supercapacitors. Nanoscale Research Letters. 12 (1), 171 (2017).
  31. Kim, M., Oh, I., Kim, J. Superior electric double layer capacitors using micro- and mesoporous silicon carbide sphere. Journal of Materials Chemistry A. 3 (7), 3944-3951 (2015).
  32. Stoller, M. D., Ruoff, R. S. Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy & Environmental Science. 3 (9), 1294-1301 (2010).
  33. Taberna, P. L., Simon, P., Fauvarque, J. F. Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors. Journal of The Electrochemical Society. 150 (3), 292 (2003).
  34. Yang, I., Kim, S. -. G., Kwon, S. H., Kim, M. -. S., Jung, J. C. Relationships between pore size and charge transfer resistance of carbon aerogels for organic electric double-layer capacitor electrodes. Electrochimica Acta. 223, 21-30 (2017).
  35. Arulepp, M., et al. Influence of the solvent properties on the characteristics of a double layer capacitor. Journal of Power Sources. 133 (2), 320-328 (2004).
  36. Mei, B. -. A., Munteshari, O., Lau, J., Dunn, B., Pilon, L. Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. The Journal of Physical Chemistry C. 122 (1), 194-206 (2018).
  37. Nian, Y. -. R., Teng, H. Influence of surface oxides on the impedance behavior of carbon-based electrochemical capacitors. Journal of Electroanalytical Chemistry. 540, 119-127 (2003).
  38. Gamby, J., Taberna, P. L., Simon, P., Fauvarque, J. F., Chesneau, M. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. Journal of Power Sources. 101 (1), 109-116 (2001).
  39. Coromina, H. M., Adeniran, B., Mokaya, R., Walsh, D. A. Bridging the performance gap between electric double-layer capacitors and batteries with high-energy/high-power carbon nanotube-based electrodes. Journal of Materials Chemistry A. 4 (38), 14586-14594 (2016).
  40. Fang, B., Binder, L. A modified activated carbon aerogel for high-energy storage in electric double layer capacitors. Journal of Power Sources. 163 (1), 616-622 (2006).
  41. Lei, C., et al. Activated carbon from phenolic resin with controlled mesoporosity for an electric double-layer capacitor (EDLC). Journal of Materials Chemistry A. 1 (19), 6037-6042 (2013).
  42. Lewandowski, A., Olejniczak, A., Galinski, M., Stepniak, I. Performance of carbon-carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes. Journal of Power Sources. 195 (17), 5814-5819 (2010).
  43. Dai, Z., Peng, C., Chae, J. H., Ng, K. C., Chen, G. Z. Cell voltage versus electrode potential range in aqueous supercapacitors. Scientific Reports. 5 (1), 9854 (2015).
  44. Kang, B., Ceder, G. Battery materials for ultrafast charging and discharging. Nature. 458 (7235), 190-193 (2009).
  45. Ban, C., et al. Nanostructured Fe3O4/SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode. Advanced Materials. 22 (20), 145-149 (2010).
  46. Sun, Y., Hu, X., Luo, W., Xia, F., Huang, Y. Reconstruction of Conformal Nanoscale MnO on Graphene as a High-Capacity and Long-Life Anode Material for Lithium Ion Batteries. Advanced Functional Materials. 23 (19), 2436-2444 (2013).
  47. Lou, X. W., Deng, D., Lee, J. Y., Feng, J., Archer, L. A. Self-Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium-Ion Battery Electrodes. Advanced Materials. 20 (2), 258-262 (2008).
  48. Chen, L., et al. Electrochemical Stability Window of Polymeric Electrolytes. Chemistry of Materials. 31 (12), 4598-4604 (2019).
  49. Ruschhaupt, P., Pohlmann, S., Varzi, A., Passerini, S. Determining Realistic Electrochemical Stability Windows of Electrolytes for Electrical Double-Layer Capacitors. Batteries & Supercaps. 3 (8), 698-707 (2020).
  50. Kang, J., et al. Extraordinary Supercapacitor Performance of a Multicomponent and Mixed-Valence Oxyhydroxide. Angewandte Chemie International Edition. 54 (28), 8100-8104 (2015).
  51. Pal, B., Yang, S., Ramesh, S., Thangadurai, V., Jose, R. Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Advances. 1 (10), 3807-3835 (2019).
  52. Xie, K., et al. Carbon Nanocages as Supercapacitor Electrode Materials. Advanced Materials. 24 (3), 347-352 (2012).
  53. Demarconnay, L., Raymundo-Piñero, E., Béguin, F. A symmetric carbon/carbon supercapacitor operating at 1.6V by using a neutral aqueous solution. Electrochemistry Communications. 12 (10), 1275-1278 (2010).
  54. Frackowiak, E. Carbon materials for supercapacitor application. Physical Chemistry Chemical Physics. 9 (15), 1774-1785 (2007).
  55. Zhu, X., et al. Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chemical Engineering Science. 181, 36-45 (2018).
  56. Wang, Y., et al. Study on stability of self-breathing DFMC with EIS method and three-electrode system. International Journal of Hydrogen Energy. 38 (21), 9000-9007 (2013).
  57. Xin, L., Zhang, Z., Qi, J., Chadderdon, D., Li, W. Electrocatalytic oxidation of ethylene glycol (EG) on supported Pt and Au catalysts in alkaline media: Reaction pathway investigation in three-electrode cell and fuel cell reactors. Applied Catalysis B: Environmental. 125, 85-94 (2012).
  58. Fang, X., Kalathil, S., Divitini, G., Wang, Q., Reisner, E. A three-dimensional hybrid electrode with electroactive microbes for efficient electrogenesis and chemical synthesis. Proceedings of the National Academy of Sciences. 117 (9), 5074 (2020).
  59. Armstrong, E., sullivan, M., O’Connell, J., Holmes, J., O’Dwyer, C. 3D Vanadium Oxide Inverse Opal Growth by Electrodeposition. Journal of The Electrochemical Society. 162, 605-612 (2015).
  60. Wu, W. -. Y., Zhong, X., Wang, W., Miao, Q., Zhu, J. -. J. Flexible PDMS-based three-electrode sensor. Electrochemistry Communications. 12 (11), 1600-1604 (2010).
  61. Shitanda, I., et al. A screen-printed three-electrode-type sticker device with an accurate liquid junction-type reference electrode. Chemical Communications. 57 (23), 2875-2878 (2021).

Play Video

Cite This Article
Eom, H., Kang, J., Jang, S., Kwon, O., Choi, S., Shin, J., Nam, I. Evaluating the Electrochemical Properties of Supercapacitors using the Three-Electrode System. J. Vis. Exp. (179), e63319, doi:10.3791/63319 (2022).

View Video