В данной работе описывается изготовление и эксплуатация микрофлюидных акустофоретических чипов с использованием метода микрофлюидного акустофореза и модифицированных аптамерами микрошариков, которые могут быть использованы для быстрого и эффективного выделения грамотрицательных бактерий из среды.
В этой статье описывается изготовление и эксплуатация микрофлюидных акустофоретических чипов с использованием метода микрофлюидного акустофореза и модифицированных аптамерами микрошариков, которые могут быть использованы для быстрого и эффективного выделения грамотрицательных бактерий из среды. Этот метод повышает эффективность разделения с помощью смеси длинных квадратных микроканалов. В этой системе образец и буфер вводятся во входной порт через контроллер потока. Для центрирования шариков и разделения образцов питание переменного тока подается на пьезоэлектрический преобразователь через функциональный генератор с усилителем мощности для создания силы акустического излучения в микроканале. Существует раздвоенный канал как на входе, так и на выходе, что обеспечивает одновременное разделение, очистку и концентрацию. Устройство имеет скорость восстановления >98% и чистоту от 97,8% до 10-кратной концентрации дозы. Это исследование продемонстрировало скорость восстановления и чистоту выше, чем существующие методы разделения бактерий, предполагая, что устройство может эффективно разделять бактерии.
Разрабатываются микрофлюидные платформы для выделения бактерий из медицинских и экологических образцов, в дополнение к методам, основанным на диэлектрическом переносе, магнитофорезе, извлечении шариков, фильтрации, центробежной микрофлюидике и инерциальных эффектах, а также поверхностных акустическихволнах 1,2. Обнаружение патогенных бактерий продолжают с помощью полимеразной цепной реакции (ПЦР), но обычно она трудоемкая, сложная и трудоемкая 3,4. Системы микрофлюидного акустофореза являются альтернативой для решения этой проблемы за счет разумной пропускной способности и бесконтактной изоляции клеток 5,6,7. Акустофорез — это технология, которая отделяет или концентрирует шарики, используя явление движения материала через звуковую волну. Когда звуковые волны попадают в микроканал, они сортируются по размеру, плотности и т. д. шариков, а клетки могут быть разделены в соответствии с биохимическими и электрическими свойствами суспензионной среды 7,8. Соответственно, активно проводилось много акустофоретических исследований 9,10,11, а в последнее время было введено 3D-численное моделирование акустофоретического движения, индуцированного граничным акустическим потоком в микрофлюидике акустических волн стоячей поверхности12.
Исследования в различных областях изучают, как заменить антитела 2,3. Аптамер является целевым материалом, обладающим высокой селективностью и специфичностью, и многие исследования проводятся 2,9,10,13. Аптамеры имеют преимущества небольшого размера, отличной биологической стабильности, низкой стоимости и высокой воспроизводимости по сравнению с антителами и изучаются в диагностических и терапевтических приложениях 2,3,14.
Здесь в этой статье описывается протокол технологии микрофлюидного акустофореза, который может быть использован для быстрого и эффективного отделения грамотрицательных (GN) бактерий из среды с использованием модифицированных аптамерами микрошариков. Эта система генерирует двумерную (2D) акустическую стоячую волну через одиночное пьезоэлектрическое срабатывание путем одновременной стимуляции двух ортогональных резонансов в длинном прямоугольном микроканале для выравнивания и фокусировки прикрепленных к аптамеру микрошариков в узле и точках антиузла для эффективности разделения 2,11,15,16 . Существует раздвоенный канал как на входе, так и на выходе, что обеспечивает одновременное разделение, очистку и концентрацию.
Этот протокол может быть полезен в области ранней диагностики бактериальных инфекционных заболеваний, а также быстрого, селективного и чувствительного ответа на патогенные бактериальные инфекции посредством мониторинга воды в режиме реального времени.
Мы разработали микрофлюидное устройство звуковой левитации для захвата и передачи бактерий GN из образцов культуры на высокой скорости на основе метода непрерывного хода в соответствии с их размером и типом, а также модифицированных аптамерами микрошариков. Длинный квадратный микрок?…
The authors have nothing to disclose.
Эта работа была поддержана грантом Национального исследовательского фонда Кореи (NRF), финансируемым корейским правительством (Министерство науки и ИКТ). (Нет. НРФ-2021R1A2C1011380)
1 µm polystyrene microbeads | Bang Laboratories | PS04001 | Cell size beads |
10 µm Streptavidin-coated microbeads | Bang Laboratories | CP01007 | Aptamer affinity beads |
4-inch Silicon Wafer/SU-8 mold | 4science | 29-03573-01 | Components of chip |
Aptamer | Integrated DNA Technologies | GN3-6' | RNA for bacteria conjugation |
Borosilicate glass | Schott | BOROFLOAT 33 | Components of chip |
Centrifuge | Daihan | CF-10 | Wasing particles |
Cyanoacrylate glue | 3M | AD100 | Attach PZT to microchip |
Escherichia coli DH5α | KCTC | KCTC2571 | Target bacteria |
Functional generator | GW Instek | AFG-2225 | Generate frequency |
High-speed camera | Photron | FASTCAM Mini | Observation of separation |
Hot plate | As one | HI-1000 | Heating plate for curing of liquid PDMS |
KOVAX-SYRINGE 10 mL Syringe | Koreavaccine | 22G-10ML | Fill the microfluidic acoustophoresis channel with bubble-free demineralized water. |
Liquid polydimethylsiloxane, PDMS | Dow Corning Inc. | Sylgard 184 | Components of chip |
LB Broth Miller | BD Difco | 244620 | Cell culture (Luria-Bertani medium) |
Microscope | Olympus Corp. | IX-81 | Observation of separation |
PBS buffer | Capricorn scientific | PBS-1A | Wasing bacteria |
PEEK Tubes | Saint-Gobain Ppl Corp. | AAD04103 | Inject or collect particles |
Piezoelectric transducer | Fuji Ceramics | C-213 | Generate specific wave in channel |
Power amplifier | Amplifier Research | 75A250A | Amplify frequency |
Pressure controller/μflucon | AMED | AMED-μflucon | Control of air pressure/flow controller |
Tris-HCl buffer | invitrogen | 15567027 | Wasing particles |
Tube rotator | SeouLin Bioscience | SLRM-3 | Modifiying aptamer and bead |