O ácido graxo β-oxidação é uma via metabólica essencial responsável pela geração de energia em muitos tipos diferentes de células, incluindo hepatócitos. Aqui, descrevemos um método para medir o ácido graxo β-oxidação em hepatócitos primários recém-isolados usando ácido palmítico de 14C.
O ácido graxo β-oxidação é um caminho metabólico fundamental para atender às demandas energéticas do fígado e fornecer substratos e cofatores para processos adicionais, como cetogênese e gliconeogênese, que são essenciais para manter a homeostase de glicose do corpo inteiro e apoiar a função de órgãos extra-hepáticos no estado de jejum. O β-oxidação do ácido graxo ocorre dentro das mitocôndrias e peroxismos e é regulado através de múltiplos mecanismos, incluindo a absorção e ativação de ácidos graxos, níveis de expressão enzime e disponibilidade de cofatores como a coenzima A e NAD+. Em ensaios que medem o ácido graxo β-oxidação em homogeneizadores hepáticos, a lise celular e a adição comum de níveis suprafisiológicos de cofatores mascaram os efeitos desses mecanismos regulatórios. Além disso, a integridade das organelas nos homogeneizadores é difícil de controlar e pode variar significativamente entre as preparações. A medição do ácido graxo β-oxidação em hepatócitos primários intactos supera as armadilhas acima. Este protocolo descreve um método para a medição do ácido graxo β-oxidação em uma suspensão de hepatócitos de camundongos primários recém-isolados incubados com ácido palmítico de 14C. Ao evitar horas a dias de cultura, este método tem a vantagem de preservar melhor os níveis de expressão proteica e a atividade da via metabólica do fígado original, incluindo a ativação do ácido graxo β-oxidação observado em hepatócitos isolados de camundongos em jejum em comparação com camundongos alimentados.
O ácido graxo β-oxidação é um processo essencial no metabolismo lipídico, fornecendo um caminho catabólico para equilibrar a síntese de ácidos graxos e a ingestão da dieta. Esse processo gera energia para múltiplos órgãos, incluindo o músculo cardíaco, córtex renal e fígado em jejum, e utiliza ácidos graxos obtidos da dieta, lipólise tecidual adiposa e triglicerídeos internos 1,2.
A oxidação do ácido graxo através da via β-oxidação resulta no encurtamento sequencial da cadeia de acilho gorduroso por dois carbonos de cada vez, liberados como acetil-CoA, e esse processo ocorre tanto nas mitocôndrias quanto nos peroxisomes. Enquanto a maioria dos ácidos graxos sofre apenas β-oxidação, alguns são oxidados em diferentes carbonos antes de entrar neste caminho. Por exemplo, ácidos graxos substituídos por 3 metil, como o ácido fistanico, sofrem a remoção de um carbono por α-oxidação nos perosemos antes de entrar na via β-oxidação. Da mesma forma, alguns ácidos graxos são primeiro convertidos em ácidos graxos dicarboxílicos por oxidação do grupo metil terminal (ω-oxidação) no ânticulo endoplasmático antes de serem preferencialmente oxidados nos perosários por β-oxidação3.
Independentemente da organela específica, um ácido graxo deve primeiro ser convertido em um tiaíster aconchego A (CoA), ou acyl-CoA, para ser oxidado através da via β-oxidação. β-Oxidação de Acyl-CoAs de cadeia longa na matriz mitocondrial requer o transporte carnitina para sua translocação, onde a palmitoyltransferase 1 (CPT1) catalisa a conversão de aciila-CoAs para acicarnitinas e é a enzima que limita a taxa neste processo4. Uma vez translocados à matriz mitocondrial, os aciis-CoAs são re-formados e servem como substratos para o maquinário mitocondrial β-oxidação. No estado de jejum, o acetil-CoA produzido através de β-oxidação em mitocôndrias hepáticas é canalizado principalmente para cetogênese. Peroxisomos servem como o local principal para a β-oxidação de ácidos graxos de cadeia muito longa, ramificadas e dicarboxílicos. Os peroxisários não exigem que o transporte de carnitina importe substratos de ácidos graxos, em vez de importar o correspondente acyl-CoAs através da atividade dos transportadores de de ligação ATP (ABC) ABCD1-35. Dentro dos peroxisomes, os acilico-CoAs são então oxidados por um conjunto dedicado de enzimas, distintas do ácido graxo mitocondrial β máquinas de oxidação. Tanto mitocôndrias quanto peroxisomes também requerem um fornecimento de NAD+ e CoA livre para oxidar cadeias de acicila gordurosa. Os níveis de COA no fígado têm mostrado aumento em resposta ao jejum, apoiando o aumento da taxa de oxidação de ácidos graxos que ocorre neste estado6. Além disso, o aumento da degradação do CoA nos peroxisomes resulta em uma diminuição seletiva na oxidação de ácido graxo peroxisomal7. Portanto, o processo de oxidação de ácidos graxos dentro da célula é regulado pelos níveis de expressão e atividades das enzimas envolvidas na ativação, transporte e oxidação de ácidos graxos, bem como as concentrações de cofatores e outros metabólitos em vários compartimentos subcelulares.
Procedimentos que utilizam homogeneizadores teciduais para medir a oxidação de ácidos graxos destroem a arquitetura celular que regula e apoia esse processo, levando a uma coleta de dados que não refletem com precisão o metabolismo in vivo. Enquanto as técnicas que utilizam hepatócitos primários banhados preservam esse sistema, a cultura de células isoladas por longos períodos de tempo resulta em uma perda do perfil de expressão genética in vivo que estava presente nas células quando ainda viviam dentro do animal 8,9. O protocolo a seguir descreve um método para isolar hepatócitos primários e avaliar sua capacidade de ácido graxo β-oxidação imediatamente após o isolamento e na suspensão, usando [1-14C]ácido palmítico. O ensaio baseia-se na medição da radioatividade associada aos metabólitos solúveis ácidos (ASM) ou produtos, como acetil-CoA, produzidos pela β-oxidação do ácido palmítico 10,11.
Durante a perfusão hepática, é fundamental evitar a introdução de bolhas de ar, pois bloqueiam os microcapilários do fígado, impedindo ou restringindo a circulação do buffer e diminuindo o rendimento e a viabilidade do hepatocito e da viabilidade20,21. Precauções, como inspecionar de perto a linha de entrada preenchida com buffer antes da cannulação do IVC e evitar tirar a linha de entrada do tubo contendo buffer 1 para mudar para Buffer 2, como desc…
The authors have nothing to disclose.
Este trabalho foi apoiado pela concessão dos Institutos Nacionais de Saúde R35GM119528 a Roberta Leonardi.
(R)-(+)-Etomoxir sodium salt | Tocris Bioscience | 4539/10 | |
[1-14C]-Palmitic acid, 50–60 mCi/mmol, 0.5 mCi/mL | American Radiolabeled Chemicals | ARC 0172A | |
1 M HEPES, sterile | Corning | 25060CI | |
10 µL disposable capillaries/pistons for positive displacement pipette | Mettler Toledo | 17008604 | |
1000 µL, 200 µL, and 10 µL pipettes and tips | |||
5 mL, 10 mL, and 25 mL serological pipettes | |||
50 mL sterile centrifuge tubes | CellTreat | 229421 | |
70% Perchloric acid | Fisher Scientific | A2296-1LB | |
BSA, fatty acid-free | Fisher Scientific | BP9704100 | |
CaCl2 dihydrate | MilliporeSigma | 223506 | |
D-(+)-Glucose | MilliporeSigma | G7021 | |
EGTA | Gold Biotechnology | E-217 | |
Ethanol | Pharmco | 111000200CSPP | |
Filter System, 0.22 μm PES Filter, 500 mL, Sterile | CellTreat | 229707 | |
Gentamicin sulphate | Gold Biotechnology | G-400-25 | |
HDPE, 6.5 mL scintillation vials | Fisher Scientific | 03-342-3 | |
Hemocytometer | |||
Hypodermic needles 22 G, 1.5 in | BD Biosciences | 305156 | |
Isoflurane | VetOne | 502017 | |
KCl | Fisher Scientific | BP366-1 | |
KH2PO4 | MilliporeSigma | P5655 | |
Liberase TM Research Grade | MilliporeSigma | 5401119001 | Defined blend of purified collagenase I and II with a medium concentration of thermolysin |
M199 medium | MilliporeSigma | M5017 | |
MgSO4 heptahydrate | MilliporeSigma | M1880 | |
Microcentrifuge | Fisher Scientific | accuSpin Micro 17 | |
Microdissecting Scissors | Roboz Surgical Instrument Co | RS-5980 | |
NaCl | Chem-Impex International | 30070 | |
NaHCO3 | Acros Organics | 424270010 | |
Palmitic acid | MilliporeSigma | P0500 | |
Penicillin/streptomycin (100x) | Gibco | 15140122 | |
Phosphate buffered saline (PBS) | Cytiva Life Sciences | SH30256.01 | |
Positive displacement pipette MR-10, 10 µL | Mettler Toledo | 17008575 | |
Refrigerated centrifuge with inserts for 50 mL conical tubes | Eppendorf | 5810 R | |
Round-bottom, 14 mL, polypropylene culture test tubes | Fisher Scientific | 14-956-9A | |
Scintillation counter | Perkin Elmer | TriCarb 4810 TR | |
ScintiVerse BD cocktail | Fisher Scientific | SX18-4 | |
Shaking water bath, 30 L capacity | New Brunswick Scientific | Model G76 | |
Sterile cell strainers, 100 µm | Fisher Scientific | 22363549 | |
Thumb Dressing Forceps | Roboz Surgical Instrument Co | RS-8120 | |
Trypan Blue | Corning | 25900CI | |
Variable-flow peristaltic pump | Fisher Scientific | 138762 | |
Water baths, 2–2.5 L capacity |