Cet article fournit un protocole détaillé pour la préparation de grilles d’échantillons à des températures aussi élevées que 70 °C, avant la congélation pour les expériences cryo-EM.
Les grilles d’échantillons pour les expériences de cryo-microscopie électronique (cryo-EM) sont généralement préparées à une température optimale pour le stockage d’échantillons biologiques, principalement à 4 °C et parfois à température ambiante. Récemment, nous avons découvert que la structure protéique résolue à basse température peut ne pas être fonctionnellement pertinente, en particulier pour les protéines d’archées thermophiles. Une procédure a été développée pour préparer des échantillons de protéines à des températures plus élevées (jusqu’à 70 ° C) pour l’analyse cryo-EM. Nous avons montré que les structures provenant d’échantillons préparés à des températures plus élevées sont fonctionnellement pertinentes et dépendent de la température. Nous décrivons ici un protocole détaillé pour la préparation de grilles d’échantillons à haute température, en utilisant 55 °C comme exemple. L’expérience a utilisé un appareil de vitrification modifié à l’aide d’un tube de centrifugation supplémentaire, et les échantillons ont été incubés à 55 ° C. Les procédures détaillées ont été affinées pour minimiser la condensation de vapeur et obtenir une fine couche de glace sur la grille. Des exemples d’expériences réussies et infructueuses sont fournis.
La technologie cryo-EM pour résoudre les structures des complexes protéiques a continué à s’améliorer, en particulier dans le sens de l’obtention de structures à haute résolution 1,2. Entre-temps, le paysage de son application a également été élargi en variant les conditions d’échantillon telles que le pH ou les ligands avant le processus de vitrification3, qui implique la préparation de grilles d’échantillons suivie de la congélationplongeante 4,5. Une autre condition importante est la température. Bien que les expériences cryo-EM, comme la cristallographie aux rayons X, soient effectuées à basse température, la structure résolue par cryo-EM reflète la structure à l’état de solution avant la vitrification. Jusqu’à récemment, la majorité des études cryo-EM d’analyse par particules uniques (SPA) utilisent des échantillons conservés sur de la glace (c.-à-d. à 4 °C) avant la vitrification6, bien qu’un certain nombre d’études utilisent des échantillons à une température ambiante d’environ 7,8,9,10 ou aussi élevée que 42 °C 11. Dans un rapport récent, nous avons effectué des études dépendantes de la température de l’enzyme cétol-acide réductatosomerase (KARI) de l’archéon thermophile Sulfolobus solfataricus (Sso) à six températures différentes de 4 ° C à 70 ° C12. Nos études suggèrent qu’il est important de préparer des grilles d’échantillons à des températures fonctionnellement pertinentes et que la cryo-EM est la seule méthode structurelle pratiquement réalisable pour résoudre la structure du même complexe protéique à plusieurs températures.
La principale difficulté pour la vitrification à haute température est de minimiser la condensation de vapeur et d’obtenir de la glace mince. Nous rapportons ici le protocole détaillé utilisé pour préparer des grilles d’échantillons à haute température dans notre étude précédente du Sso-KARI 12. Nous supposons que les lecteurs ou les téléspectateurs ont déjà de l’expérience dans les procédures globales de préparation des échantillons et de traitement des données pour les expériences cryo-EM et mettons l’accent sur les aspects pertinents pour les températures élevées.
À l’étape 1 du protocole, assurez-vous que le tube de centrifugation a été bien installé et ne tombe pas lorsque l’expérience est en cours. En raison de l’accumulation d’un grand nombre de gouttelettes d’eau dans la chambre, ce qui pourrait modifier la capacité d’adsorption du papier filtre, il est recommandé de ne pas dépasser 30 minutes après que la chambre de l’appareil de vitrification ait atteint la température d’équilibre. Si le temps de fonctionnement dépasse 30 min, l’opérateur doi…
The authors have nothing to disclose.
Les auteurs remercient le Dr Hervé Remigy de Thermo Fisher Scientific pour ses précieux conseils. Les expériences cryo-EM ont été réalisées à l’Academia Sinica Cryo-EM Facility (ASCEM). L’ASCEM est soutenue par l’Academia Sinica (Grant No. AS-CFII-108-110) et Taiwan Protein Project (Grant No. AS-KPQ-109-TPP2). Les auteurs remercient également Mme Hui-Ju Huang pour son aide dans la préparation des échantillons.
Falcon tube | Falcon | 352070 | size: 50 mL |
Filter paper | Ted Pella | 47000-100 | Ø55/20mm, Grade 595 |
HI1210 | Leica | water bath | |
K100X | Electron Microscopy Sciences | glow discharge | |
Quantifoil, 1.2/1.3 200Mesh Cu grid | Ted Pella | 658-200-CU-100 | |
Titan Krios G3 | Thermo Fisher Scientific | 1063996 | low dose imaging |
Vitrobot Mark IV | Thermo Fisher Scientific | 1086439 | |
Vitrobot Tweezer | Ted Pella | 47000-500 |