Se proporciona un protocolo para configurar un microscopio de barrido láser confocal estándar para mediciones de transferencia de energía de resonancia Förster in vivo , seguido de una evaluación de datos.
Los experimentos de transferencia de energía de resonancia de Förster (FRET) basados en emisiones sensibilizadas se realizan fácilmente, pero dependen de la configuración microscópica. Los microscopios de barrido láser confocal se han convertido en un caballo de batalla para los biólogos. Los sistemas comerciales ofrecen una alta flexibilidad en el ajuste de potencia láser y la sensibilidad del detector y, a menudo, combinan diferentes detectores para obtener la imagen perfecta. Sin embargo, la comparación de datos basados en la intensidad de diferentes experimentos y configuraciones a menudo es imposible debido a esta flexibilidad. Los procedimientos amigables para los biólogos son una ventaja y permiten un ajuste simple y confiable de la configuración del láser y el detector.
Además, como los experimentos FRET en células vivas se ven afectados por la variabilidad en la expresión de proteínas y las relaciones donante-aceptor, los niveles de expresión de proteínas deben considerarse para la evaluación de datos. Aquí se describe un protocolo simple para mediciones FRET confiables y reproducibles, que incluye rutinas para la estimación de la expresión de proteínas y el ajuste de la intensidad del láser y la configuración del detector. La evaluación de los datos se realizará mediante calibración con una fusión de fluoróforos de eficiencia FRET conocida. Para mejorar la simplicidad, se han comparado los factores de corrección que se han obtenido en las células y mediante la medición de proteínas fluorescentes recombinantes.
La transferencia de energía de resonancia de Förster ((F)RET) se observa típicamente mediante espectroscopia de fluorescencia, aunque el proceso en sí no se limita a ocurrir entre fluoróforos. El acoplamiento dipolo-dipolo subyacente simplemente requiere una molécula donante emisora de luz y un aceptor que absorba la luz. Esto se deriva de la superposición espectral requerida integral J de los espectros normalizados de emisión y absorbancia aceptora del donante1. Sin embargo, debido a que RET compite con la fluorescencia, la transferencia de energía se vuelve medible por alteraciones en la emisión de fluorescencia: RET induce el enfriamiento del donante y la emisión del aceptor sensibilizado.
El RET basado en fluoróforos se ha denominado transferencia de energía de resonancia de fluorescencia (FRET) para separarla de la transferencia de energía de resonancia de bioluminiscencia (BRET). RET depende en gran medida de la distancia entre el donante y el aceptor, que está ampliamente en el rango de 0.5-10 nm2 y, por lo tanto, en el mismo rango que las dimensiones de las proteínas y sus complejos. En segundo lugar, RET depende de la orientación dipolo-dipolo kappa al cuadrado. Combinado con el hecho de que la libertad rotacional de los fluoróforos unidos a proteínas puede ser descuidada debido al peso molecular y la lenta relajación rotacional, RET permite el análisis de alteraciones conformacionales3.
El llamado radio de Förster se basa en la integral de superposición espectral y el rango de longitud de onda de la superposición, de modo que los cromóforos que absorben la luz roja dan como resultado radios de Förster más largos que los tintes que absorben la luz azul. Como el rango dinámico de las mediciones FRET está limitado por 0.5 × R0 y 1.5 × R0, el par FRET ECFP-EYFP tiene un rango dinámico de 2.5-7.3 nm debido a su R0 de 4.9 nm4.
El brillo de un fluoróforo viene dado por el producto de su coeficiente de extinción molar y su rendimiento cuántico. Para las mediciones FRET, es ventajoso elegir fluoróforos de brillo casi similar. Esto mejora la detección del enfriamiento del donante y la emisión sensibilizada del aceptor. También favorece la calibración del sistema de microscopía. Al observar los pares FRET de proteínas cian y fluorescentes de uso frecuente, el menor brillo de las proteínas fluorescentes cian se vuelve obvio (Figura 1A).
Sin embargo, la vida útil del aceptor debe ser inferior a la vida útil del donante, lo que garantiza la disponibilidad del aceptor para la transferencia de energía. Si la vida del aceptante excede la vida del donante, el aceptor aún podría estar en el estado excitado cuando el donante se excita nuevamente. Las proteínas fluorescentes cian avanzadas como mTurquoise muestran una vida útil prolongada y, por lo tanto, contribuyen a una mayor probabilidad de FRET (Figura 1B). La probabilidad de FRET también depende del coeficiente de extinción molar del aceptor.
El enfriamiento del donante y la emisión sensibilizada del aceptor se caracterizan por una relación lineal que permite el cálculo del FRET basado en el donante o el aceptor. Los factores correspondientes de linealidad se denominan factor G (donante a aceptor) o xi (aceptor a donante), que son valores recíprocos4. La medición de FRET entre proteínas fluorescentes por microscopía de fluorescencia a menudo requiere correcciones para DSBT y ASBT debido a los amplios espectros de absorción y em…
The authors have nothing to disclose.
Los experimentos se realizaron en la Plataforma de Tecnología de Microscopía de Luz (LiMiTec) de la Facultad de Biología de la Universidad de Bielefeld. Este trabajo ha sido financiado por la Universidad de Bielefeld.
8-well slides | Ibidi | 80821 | |
Immersion oil Immersol W2010 | Zeiss | 444969-0000-000 | refraction index of water |
LSM 1: AxioObserver with LSM 780 scan head, confocal laser scanning microscope | Zeiss | ||
LSM 2: AxioObserver with LSM 5 scan head, confocal laser scanning microscope | Zeiss |