Summary

斑马鱼游泳期间后横向线阿弗伦特神经元的活动

Published: February 10, 2021
doi:

Summary

我们描述了一个协议,以监测在模型脊椎动物毛细胞系统运动命令期间的无动于衷的神经元活动的变化。

Abstract

感官系统收集指导行为必不可少的线索,但动物必须破译哪些信息与生物学相关。运动产生重新获得线索,表明动物必须脱离周围环境的相关感官线索。例如,当鱼游泳时,由构成横向线系统的机械感应神经瘤(包括毛细胞)检测到身体起伏产生的流量。然后,毛细胞通过感官性神经元将流体运动信息从传感器传输到大脑。同时,电机指令的必然放电被传到毛细胞,以防止感官超载。因此,在评估横向线系统的灵敏度时,考虑运动过程中预测运动信号的抑制作用至关重要。我们已经开发出一种体内电生理学方法,可以同时监测斑马鱼幼虫(受精后4-7天)的后横向线轴神经元和腹腔运动根活动,这种活动可以持续几个小时。使用松散的贴片夹紧技术实现对有发声神经元的细胞外记录,该技术可以检测来自单个或多个神经元的活动。用玻璃电极通过皮肤进行心室根记录,以检测运动神经元活动。我们的实验协议提供了在完整、行为灵巧的脊椎动物中监测运动行为的内源性或唤起感官输入变化的潜力。

Introduction

机械感官系统的神经元在听觉和平衡过程中将信息从毛细胞传输到大脑。电子生理学可以通过直接记录揭示过敏神经元的敏感性。虽然从头发细胞的整个细胞修补可能具有挑战性,从下游的通风神经元记录更容易,并允许评估行动潜力,以响应受控刺激1,2,3。刺激头发细胞导致其偏转,从而改变机械感官结构,从而触发在无动于衷的神经元4,5,6的动作潜力(尖峰)增加。在没有外部刺激的情况下,由于谷氨酸从毛细胞泄漏到发精后7、8的终端,心酸神经元也会自发地尖峰,并被证明有助于保持敏感性9、10。贴片夹记录的通风活动,使观察头发细胞的敏感性和信号动力学,这是不可能使用技术与较低的时间分辨率,如在微音11,12或功能钙成像13,14,15。以下协议将允许记录与运动命令并存的无动于衷的活动,以显示毛细胞敏感性的瞬时变化。

斑马鱼(Danio rerio)使用神经瘤中所含的头发细胞组成横向线系统来检测相对于其身体的水运动,这些水体被转化为导航16、17、18、捕食者躲避、猎物捕获19、20和学校教育21所必需的神经信号。水流也可以由游泳22、23、24、呼吸22、25、26和喂食27的运动自行产生。这些行为包括重复运动,可以疲劳头发细胞和损害传感。因此,横向线系统必须区分外部(外向)和自生成(重现)流量刺激。在斑马鱼的运动过程中,必然放电会减弱自生成的流动信号。这种抑制性预测运动信号通过下降神经元传导到感官受体,以修改输入或中断处理再吸收反馈28,29。开创性的工作有助于我们早期了解这个馈送系统依赖于体外制备,其中神经回路的连接性和内源活动没有保持28,30,31,32,33,34,35。该协议描述了一种保存完整神经回路的方法,其中内源反馈动力学得以保持,从而能够更好地了解体内的必然放电。

此处概述的协议描述了如何同时监测幼虫斑马鱼的后横向线神经元和运动神经元活动。在运动指令之前、期间和之后对发光信号动态进行特征化,可深入了解中枢神经系统实时的内生反馈,这些反馈在运动过程中调节了毛细胞的敏感性。该协议概述了在实验前需要准备哪些材料,然后描述了如何瘫痪和准备斑马鱼幼虫。该协议将描述如何建立一个稳定的松散补丁记录的通风神经元和细胞外腹腔根(VR)记录的运动神经元。使用此协议可以获得的代表性数据来自一个范例个体,并针对实验协议的多个副本进行了分析。使用 MATLAB 中的自定义书面脚本对数据进行预处理。总的来说,这种体内实验范式有望在模型脊椎动物毛细胞系统中更好地了解运动过程中的感官反馈。

Protocol

所有动物护理和实验都是按照佛罗里达大学机构动物护理和使用委员会批准的协议进行的。 1. 为电生理记录准备材料 制作硅胶弹性体底录音盘。 将一层薄薄的自混合硅弹性体组件(如 Sylgard)放入盖玻璃底组织培养盘中,直到它与浅井的边缘水平。大约 0.5 mL 就足够了。 在室温下将菜盖上并治愈至少48小时。 制作解剖引脚。 使用?…

Representative Results

斑马鱼幼虫被正确固定,并实现后横向线腹膜和VR记录后,可以同时测量无光和运动神经元的活性。使用无间隙录制协议(第 1.4 步)显示录制通道,以持续监控通风和 VR 活动。实时地,可以观察到自发性尖峰率的降低与VR活动同时观察,指示虚构的游泳比赛(图1E)。我们发现,最佳结果和准确的峰值检测是记录产品,其信号与噪声比至少达到 0.5。自定义书面预处理脚本生…

Discussion

描述的实验协议提供了在完整、行为良好的脊椎动物中监测运动行为感官输入的内源性变化的潜力。具体来说,它详细介绍了一种体内方法,用于同时执行横向线轴神经元和幼虫斑马鱼腹腔运动根部的细胞外记录。自发性活动以前在斑马鱼中具有特征,没有考虑到潜在的并发运动活动1、2、39、40、41。</sup…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢国家卫生研究院(DC010809)、国家科学基金会(IOS1257150,1856237)和惠特尼海洋生物科学实验室对J.C.L的支持。我们要感谢廖实验室过去和现在的成员鼓励讨论。

Materials

100 mL beaker PYREX 1000 resceptacle for etchant
10x water immersion objective Olympus UMPLFLN10xW low magnification for positioning larvae and recording electrode
40x water immersion objective Olympus LUMPLFLN40XW higher magnification for position electrode tip and establishing patch-clamp
abfload.m supplemental coding file custom written MATLAB script for converting raw electrophysiology recordings to .mat files
AffVR_preprocess.m supplemental coding file custom written MATLAB script for preprocessing recording data
BNC coaxial cables ThorLabs 2249-C-12 connecting amplifier and digitizer channels; require 4
borosilicate glass capillaries w/ filament Warner Instruments G150F-3 inner diameter: 0.86, outer diameter: 1.50; capillary glass used to form recording electrodes
burst_detect supplemental coding file custom written MATLAB function necessary to run AffVR_preprocess.m
computer N/A N/A any computer should work
DC Power Supply Tenma 72-420 used for electrically etching dissection pins
electrophysiology digitizer Axon Instruments, Molecular Devices Axon DigiData 1440A enables acquisition of patch-clamp data
filament Sutter Instrument Company FB255B 2.5 mm box filament used in micropipette puller
fine forceps Fine Science Tools Dumont #5 (0.05 x 0.02 mm) Item No. 11295-10 used to manipulate larvae and insert pins
fixed stage DIC microscope Olympus BX51WI microscope used to visualize and establish patch-clamp recordings
flexible, tapered pipette tip Fisher Scientific 02-707-169 flexible tips enable insertion into recording electrode to dispense extracellular solution at the tip
FluoroDish World Precision Instruments Inc. FD3510-100 cover glass bottomed dish recording dish
KimWipe KimTech 34155 task wipe used for wicking away excess fluid from larvae
Kwik-Gard World Precision Instruments Inc. 710172 self-mixing sylgard elastomer
MATLAB MathWorks R2020b command line software for preprocessing data
microelectrode amplifier Axon Instruments, Molecular Devices MultiClamp 700B patch clamp amplifier for dual channel recordings
microforge Narishige MF-830 microforge to polish recording electrode
micromanipulator control unit Siskiyou MC1000-eR/T 4-axis dial coordinator for controlling micromanipulator
micropipette puller Sutter Instrument Company Flaming/Brown P-97 for pulling capillary glass into recording electrodes
microscope control unit Siskiyou MC1000e positions the microscope around the fixed stage and preparation
motorized micromanipulator Siskiyou MX7600 positions the headstage and attached recording electrode for patch-clamp recording
MultiClamp Commander Molecular Devices 2.2.2 downloadable from Axon MultiClamp 700B Commander download page
optical air table Newport Corporation VH3036W-OPT breadboard isolation table to float microscope and minimize vibrations during recordings
pCLAMP Molecular Devices 10.7.0 downloadable from Axon pCLAMP 10 Electrophysiology Data Acquisition & Analysis Software Download page
permanent ink marker Sharpie order from amazon.com for marking the leading edge side of the VR electrode to ensure proper orientation when inserting into pipette holder
petri-dish Falcon 35-3001 used to immerse larvae in paralytic
pipette holder Molecular Devices 1-HL-U hold recording electrode and connect to the headstage
pneumatic transducer Fluke Biomedical Instruments DPM1B for controlling recording electrode internal pressure
potassium hydroxide Sigma-Aldrich 221473-25G etchant for etching dissection pins
silicone tubing Tygon 14-169-1A tubing to connect pneumatic transducer to pipette holder
spike_detect supplemental coding file custom written MATLAB function necessary to run AffVR_preprocess.m
stereomicroscope Carl Zeiss Stemi 2000-C used to visualize pin tips and during preparation of larvae
straight edge razor blade Canopus order from amazon.com cuts the tungsten wire while making dissection pins
swimbout_detect supplemental coding file custom written MATLAB function necessary to run AffVR_preprocess.m
syringe Becton Dickinson Compoany 309602 filled with extracellular solution to inject into recording electrodes
transfer pipette Sigma-Aldrich Z135003-500EA single use, non-sterile pipette for transfering larvae
tricaine methanesulfonate Syndel 12854 pharmaceutical aneasthetic used to euthanize larvae with high dosage.
tungsten wire World Precision Instruments Inc. 715500 0.002 inch, 50.8 μm diameter; used to make dissection pins
vacuum filtration unit Sigma-Aldrich SCGVU11RE single use, sterile, vacuum filtration units used to sterilize extracellular solution used for electrophysiology electrode ringer
voltage-clamp current-clamp headstage Molecular Devices CV-7B supplied with MultiClamp 700B amplifier used as left and right headstages
α-bungarotoxin ThermoFisher B1601 for immobilizing the larvae prior to recording

References

  1. Trapani, J. G., Nicolson, T. Mechanism of spontaneous activity in afferent neurons of the zebrafish lateral-line organ. The Journal of Neuroscience. 31 (5), 1614-1623 (2011).
  2. Haehnel-Taguchi, M., Akanyeti, O., Liao, J. C. Afferent and motorneuron activity in response to single neuromast stimulation in the posterior lateral line of larval zebrafish. Journal of Neurophysiology. 112 (6), 1329-1339 (2014).
  3. Levi, R., Akanyeti, O., Ballo, A., Liao, J. C. Frequency response properties of primary afferent neurons in the posterior lateral line system of larval zebrafish. Journal of Neurophysiology. 113 (2), 657-668 (2015).
  4. Harris, G. G., Fishkopf, L. S., Flock, A. Receptor potentials from hair cells of the lateral line. Science. 167 (3914), 76-79 (1970).
  5. Dow, E., Jacobo, A., Hossain, S., Siletti, K., Hudspeth, A. J. Connectomics of the zebrafish’s lateral line neuromast reveals wiring and miswiring in a simple microcircuit. eLife. 7, 33988 (2018).
  6. Obholzer, N., et al. Vesicular glutamate transporter 3 is required for synaptic transmission in zebrafish hair cells. The Journal of Neuroscience. 28 (9), 2110-2118 (2008).
  7. Keen, E. C., Hudspeth, A. J. Transfer characteristics of the hair cell’s afferent synapse. Proceedings of the National Academy of Sciences of the United States of America. 103 (14), 5537-5542 (2006).
  8. Li, G., Keen, E., Andor-Ardó, D., Hudspeth, A. J., von Gersdorff, H. The unitary event underlying multiquantal EPSCs at a hair cell’s ribbon synapse. The Journal of Neuroscience. 29 (23), 7558-7568 (2009).
  9. Manley, G. A., Robertson, D. Analysis of spontaneous activity of auditory neurons in the spiral ganglion of the guinea-pig cochlea. The Journal of Physiology. 258 (2), 323-336 (1976).
  10. Kiang, N. Y. S., Watanabe, T., Thomas, E., Clark, L. . Discharge patterns of single fibers in the cat’s auditory nerve. , (1965).
  11. Corey, D. P., Hudspeth, A. J. Ionic basis of the receptor potential in a vertebrate hair cell. Nature. 281 (5733), 675-677 (1979).
  12. Trapani, J. G., Nicolson, T. Physiological recordings from zebrafish lateral-line hair cells and afferent neurons. Methods in Cell Biology. 100, 219-231 (2010).
  13. Reinig, S., Driever, W., Arrenberg, A. B. The descending diencephalic dopamine system is tuned to sensory stimuli. Current Biology. 27 (3), 318-333 (2017).
  14. Zhang, Q., et al. Synaptically silent sensory hair cells in zebrafish are recruited after damage. Nature Communications. 9 (1), 1388 (2018).
  15. Pichler, P., Lagnado, L. Motor behavior selectively inhibits hair cells activated forward motion in the lateral line of zebrafish. Current Biology. 30 (1), 150-157 (2020).
  16. Olszewski, J., Haehnel, M., Taguchi, M., Liao, J. C. Zebrafish larvae exhibit rheotaxis and can escape a continuous suction source using their lateral line. PloS One. 7 (5), 36661 (2012).
  17. Suli, A., Watson, G. M., Rubel, E. W., Raible, D. W. Rheotaxis in larval zebrafish is mediated by lateral line mechanosensory hair cells. PLoS One. 7 (2), 29727 (2012).
  18. Oteiza, P., Odstcil, I., Lauder, G., Portugues, R., Engert, F. A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish. Nature. 547 (7664), 445-448 (2017).
  19. McHenry, M. J., Feitl, K. E., Strother, J. A. Larval zebrafish rapidly sense the water flow of a predator’s strike. Biology Letters. 5 (4), 477-479 (2009).
  20. Stewart, W. J., Cardenas, G. S., McHenry, M. J. Zebrafish larvae evade predators by sensing water flow. The Journal of Experimental Biology. 216, 388-398 (2013).
  21. Mekdara, P. J., Schwalbe, M. A. B., Coughlin, L. L., Tytell, E. D. The effects of lateral line ablation and regeneration in schooling giant danios. The Journal of Experimental Biology. 221, 175166 (2018).
  22. Palmer, L. M., Giuffrida, B. A., Mensinger, A. F. Neural recordings from the lateral line in free-swimming toadfish, Opsanus tau. The Biological Bulletin. 205 (2), 216-218 (2003).
  23. Ayali, A., Gelman, S., Tytell, E. D., Cohen, A. H. Lateral line activity during undulatory body motions suggests a feedback link in closed-loop control of sea lamprey swimming. Canadian Journal of Zoology. 87 (8), 671-683 (2009).
  24. Mensinger, A. F., Van Wert, J. C., Rogers, L. S. Lateral line sensitivity in free-swimming toad fish Opsanus tau. The Journal of Experimental Biology. 222, 190587 (2019).
  25. Montgomery, J., Bodznick, D., Halstead, M. Hindbrain signal processing in the lateral line system of the dwarf scorpionfish Scopeana papillosus. The Journal of Experimental Biology. 199, 893-899 (1996).
  26. Montgomery, J. C., Bodznick, D. An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neuroscience Letters. 174 (2), 145-148 (1994).
  27. Palmer, L. M., Deffenbaugh, M., Mensinger, A. F. Sensitivity of the anterior lateral line to natural stimuli in the oyster toadfish, Opsanus tau (Linnaeus). The Journal of Experimental Biology. 208, 3441-3450 (2005).
  28. Russell, I. J., Roberts, B. L. Inhibition of spontaneous lateral-line activity of efferent nerve stimulation. The Journal of Experimental Biology. 57, 77-82 (1972).
  29. Lunsford, E. T., Skandalis, D. A., Liao, J. C. Efferent modulation of spontaneous lateral line activity during and after zebrafish motor commands. Journal of Neurophysiology. 122 (6), 2438-2448 (2019).
  30. Russell, I. J. The pharmacology of efferent synapses in the lateral-line system of Xenopus laevis. The Journal of Experimental Biology. 54 (3), 643-659 (1971).
  31. Roberts, B. L., Russell, I. J. The activity of lateral-line efferent neurons in stationary and swimming dogfish. The Journal of Experimental Biology. 57 (2), 435-448 (1972).
  32. Flock, A., Russell, I. J. The post-synaptic action of efferent fibres in the lateral line organ of the burbot Lota lota. The Journal of Physiology. 235 (3), 591-605 (1973).
  33. Montgomery, J. C. Noise cancellation in the electrosensory system of the thornback ray; common mode rejection of input produced by the animal’s own ventilatory movement. Journal of Comparative Physiology. 155, 103-111 (1984).
  34. Tricas, T. C., Highstein, S. M. Action of the octavolateralis efferent system upon the lateral line of free-swimming toadfish, Opsanus tau. Journal of Comparative Physiology. 169 (1), 25-37 (1991).
  35. Weeg, M. S., Land, B. R., Bass, A. H. Vocal pathways modulate efferent neurons to the inner ear and lateral line. The Journal of Neuroscience. 25 (25), 5967-5974 (2005).
  36. Elgoyhen, A. B., Johnson, D. S., Boulter, J., Vetter, D. E., Heinemann, S. α9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell. 79 (4), 705-715 (1994).
  37. Masino, M. A., Fetcho, J. R. Fictive swimming motor patterns in wild type and mutant larval zebrafish. Journal of Neurophysiology. 93 (6), 3177-3188 (2005).
  38. Hentschke, H. abfload. 1.4.0.0. MATLAB Central File Exchange. , (2020).
  39. Harris, G. G., Milne, D. C. Input-output characteristics of the lateral-line sense organs of Xenopus laevis. The Journal of the Acoustical Society of America. 40 (1), 32-42 (1966).
  40. Liao, J. C., Haehnel, M. Physiology of afferent neurons in larval zebrafish provides a functional framework for lateral line somatotopy. Journal of Neurophysiology. 107 (10), 2615-2623 (2012).
  41. Song, S., et al. Mathematical modeling and analyses of interspike-intervals of spontaneous activity in afferent neurons of the zebrafish lateral line. Nature Science Reports. 8, 14851 (2018).
  42. Liao, J. C., Fetcho, J. R. Shared versus specialized glycinergic spinal interneurons in axial motor circuits of larval zebrafish. The Journal of Neuroscience. 28 (48), 12982-12992 (2008).
  43. von Holst, E., Mittelstaedt, H. The principle of reafference: interactions between the central nervous system and the peripheral organs. Die Naturwissenschften. 37, 463 (1950).
  44. Crapse, T. B., Sommer, M. A. Corollary discharge across the animal kingdom. Nature Reviews. Neuroscience. 9 (8), 587-600 (2008).
  45. Brichta, A. M., Goldberg, J. M. Responses to efferent activation and excitatory response-intensity relations of turtle posterior-crista afferents. Journal of Neurophysiology. 83 (3), 1224-1242 (2000).
check_url/cn/62233?article_type=t

Play Video

Cite This Article
Lunsford, E. T., Liao, J. C. Activity of Posterior Lateral Line Afferent Neurons during Swimming in Zebrafish. J. Vis. Exp. (168), e62233, doi:10.3791/62233 (2021).

View Video