急性脳スライスを用いた内因性モノアミン放出の検出に関する簡単な手法を紹介する。セットアップはモノアミン放出のためのティッシュホールダーを含んでいる48ウェル版を使用する。放出されたモノアミンは、HPLCによって電気化学的検出と結合して分析される。さらに、この技術は、創薬のためのスクリーニング方法を提供する。
モノアミン神経伝達物質は、多数の神経疾患と精神医学的疾患に関連付けられている.このような状態の動物モデルは、モノアミン神経伝達物質の放出および取り込みダイナミクスの変化を示している。電気生理学、高速スキャン環状ボルタンメトリー(FSCV)、イメージング、生体内ミクロジアル、光遺伝学、または放射能の使用などの技術的に複雑な方法は、モノアミン機能を研究するために必要とされる。ここで紹介する方法は、モノアミン放出を調べる組織ホルダーを含む48ウェルプレートを用いて急性脳スライス中のモノアミン放出を検出するための最適化された2段階のアプローチであり、モノアミン放出測定のための電気化学的検出(HPLC-ECD)と組み合わせた高性能液体クロマトグラフィーである。簡単に言えば、前頭前野、海馬、および側頭線を含む目的の領域を含むラット脳切片は、組織スライサーまたはビブラートームを用いて得られた。これらの関心領域は、脳全体から解剖され、酸素化された生理学的緩衝液中にインキュベートされた。実験時間を通じて、3-(4,5-ジメチルチアゾール-2-yl)-2,5-ジフェニルテトラゾリウム(MTT)アッセイによって生存率を調べた。急性解剖された脳領域は、トランスポーター(アンフェタミン)を介してモノアミン放出を誘導することが知られている様々な薬物条件で、またはexocttic小胞体放出(KCl)の活性化を通じてインキュベートされた。インキュベーション後、上清中の放出物を収集し、HPLC-ECDシステムを介して分析した。ここで、基礎モノアミン放出は、急性脳スライスからHPLCによって検出される。このデータは、AMPHおよびKClがモノアミン放出を誘導することを示すインビボおよびインビトロの結果をサポートする。この方法は、モノアミン輸送体依存性放出に関連するメカニズムを研究するのに特に有用であり、迅速かつ低コストでモノアミン放出に影響を及ぼす化合物をスクリーニングする機会を提供する。
多くの神経疾患および精神疾患は、単アミン神経伝達物質(ドーパミン[DA]、セロトニン[5-HT]、ノルエピネフリン[NE])恒常性1,2,3の調節不全または不十分な維持に関連している。これらの状態は、うつ病1、2、統合失調症2、不安2、中毒4、更年期5、6,7、疼痛8、およびパーキンソン病3を含むが、これらに限定されない。例えば、更年期のいくつかのラットモデルは、海馬、前頭前野、線条体内のモノアミンの調節不全または減少が、更年期障害を経験している女性に見られるうつ病と認知機能の両方に関連している可能性があることを示している。これらのモデルにおけるモノアミンの調節異常はHPLC-ECDを用いて広範囲に検討されてきたが、この研究は測定された神経伝達物質の含有量と神経伝達物質の放出を区別しなかった5,6,7.モノアミンは、Ca2+依存性のvesicular release9を介して古典的に細胞外空間に放出され、それぞれの原形質膜再取り込みシステム(ドーパミントランスポーター、DAT;セロトニントランスポーター、SERT;ノルエピネフリントランスポーター、NET)10,11を介してリサイクルされる。逆に、アンフェタミン(AMPH)や3,4-メチレンジオキシメタンフェタミン(MDMA)などの乱用薬がトランスポーターシステムを介してDAおよび5-HTをそれぞれ放出することが知られているため、これらのトランスポーターはモノアミンを放出または流出させ得ることを示唆している。.したがって、モノアミン放出ダイナミクスの適切な機械学的理解は、特定の標的薬物療法を開発するために重要である。
高速スキャン環状ボルタンメトリー(FSCV)18、生体内マイクロダイアルシス13、イメージング19、放射性標識モノアミン20のプレインキュベーション、光遺伝学、さらに最近では遺伝子組み換え蛍光センサーとフォトメトリクス21,22などのモノアミン放出を研究するために幅広い技術が採用されています。.FSCVおよび生体内マイクロ透析は、モノアミン放出の研究に使用される主要な技術である。FSCVは、急性脳スライスおよびin vivo23におけるDAを中心に刺激された興奮性放出を研究するために使用される。FSCVは電極を使用して放出を刺激または誘発するため、神経伝達物質放出の主な原因はCa2+依存性の小胞放出18、24、25、26、27、28、29、30、31である.生体内のミクロジアル症とHPLCを併用すると、関心のある脳領域に配置されたプローブを用いて細胞外神経伝達物質レベルの変化を測定する13,32。FSCVと同様に、生体内のミクロジアルシスに対する大きな制限は、神経伝達物質放出源の決定における困難である:Ca2+依存性の小胞放出またはトランスポーター依存性である。注目に値する、両方の方法は、モノアミン放出の直接測定を可能にする。光遺伝学の最近の進歩を通じて、研究は、絶妙な細胞型特異性21,22と短い時間スパンでの5-HTおよびDA放出の検出を実証する。しかし、これらの戦略は、複雑で高価な技術と機器を必要とし、間接的にモノアミン放出を測定し、特に受容体にモノアミン結合を介して。また、放射線標識モノアミンは、モノアミンのダイナミクスの研究にも使用されます。放射性標識モノアミンは、各モノアミントランスポーター20、33、34、35、36、37、38、39、40、一次ニューロン20、シナプトソーム33、39、41、異種細胞などの様々なモデルシステムにプリロードされ得る、42、および急性脳スライス43,44。しかし、放射能は実験者に潜在的な害をもたらし、トリチウム標識された検体は内因性モノアミンダイナミクス45,46を忠実に再現しない可能性がある。HPLC-ECDなどのオフライン検出法と組み合わせたスーパーフュージョンシステムは、複数の組織源からのモノアミンの検出を可能にしました。ここでは、このプロトコルは、急性脳スライスを使用して、内因性基底および刺激されたモノアミン放出を直接測定するための最適化された低コスト、シンプル、および正確な方法として提供される。
急性脳スライスは、主に生体内の解剖学的微小環境を維持し、無傷のシナプス47,48,49,50,51,52を維持するため、機械学的仮説をテストすることを可能にする。いくつかの研究では、急性脳スライスまたは切り刻まれた脳組織は、Ca2+媒介放出53,54,55,56を刺激するためにKClを使用したスーパーフュージョン技術と組み合わせて使用されてきた。超灌流システムは、モノアミンを含む神経伝達物質放出機構の分野の理解を進めるために重要であった。しかし、これらのシステムは比較的高価であり、組織分析に利用可能なチャンバーの数は4〜12の範囲です。これに対し、ここで提示する方法は安価であり、48の組織サンプルの測定を可能にし、そして96までの組織サンプルを使用するように精製され得る。48ウェルプレート内の各ウェルには、フィルターを使用して放出された製品を組織から分離する組織ホルダーが含まれ、放出されたモノアミンをHPLC-ECDによって収集して分析します。重要なことに、この方法は、モノアミン放出を調節する薬理学的薬剤による治療後に、前頭前野、海馬、および後方線条体などの異なる脳領域からの5-HT、DA、およびNE放出の同時測定を可能にする。これにより、実験者は、試験するサンプル数を増加させ、使用する動物の数を減らす安価なマルチウェルシステムを用いて複数の質問に答えることができる。
モノアミン放出測定は、異種細胞、神経細胞培養、脳シナプトソーム、エキソウビボ急性脳スライス、および動物全体で長年にわたって行われてきた13,20,41,42,58,64,65,66,67,68<sup class="xref…
The authors have nothing to disclose.
この作品は、フォンデサイト開始基金N 11191049をJ.A.P.に付与し、NIHはG.E.TにDA038598を付与することによって支援されました。
48 Well plate | NA | NA | Assay |
Acetonitrile | Fischer Scientific | A998-1 | Mobile Phase |
Calcium Chloride Ahydrous | Sigma Aldrich | C1016 | Modified Artifical Cerebrospinal Fluid OR Efflux Buffer |
Clarity Software | Anetc | ||
Citric Acid | Sigma Aldrich | Mobile Phase | |
D-(+)-Glucose | Sigma | 1002608421 | Dissection Buffer |
DMF | Sigma Aldrich | D4551 | MTT Assay |
EDTA-Na2 | Sigma Aldrich | Mobile Phase | |
GraphPad Software | Graphpad Software, Inc | Statistical Analysis | |
Glycerol | Sigma Aldrich | G5516 | Lysis buffer |
HEPES | Sigma Aldrich | H3375 | Lysis buffer |
HPLC, Decade Amperometric | Anetc | HPLC, LC-EC system | |
HPLC | Amuza | HPLC HTEC-510. | |
L-Asrobic Acid | Sigma Aldrich | A5960 | Dissection Buffer |
Magnesium Sulfate | Sigma | 7487-88-9 | KH Buffer |
Microcentrifuge Filter Units UltraFree | Millipore | C7554 | Assay – 6 to fit in 48 well plate |
MTT | Thermo Fisher | M6494 | MTT Assay |
Nanosep | VWR | 29300-606 | Assay; protein assay |
Octanesulfonic acid | Sigma Aldrich | V800010 | Mobile Phase |
Pargyline Clorohydrate | Sigma Aldrich | P8013 | Modified Artifical Cerebrospinal Fluid OR Efflux Buffer |
Phosphoric Acid | Sigma Aldrich | Mobile Phase | |
Potassium Chloride | Sigma | 12636 | KH Buffer |
Potassium Phosphate Monobasic | Sigma | 1001655559 | KH Buffer |
Precisonary VF-21-0Z | Precissonary | Compresstome | |
Protease Inhibitor Cocktail | Sigma Aldrich | P2714 | Lysis buffer. |
Sodium Bicarbonate | Sigma | S5761 | Dissection Buffer |
Sodium Bicarbonate | Sigma Aldrich | S5761 | Dissection Buffer |
Sodium Chloride | Sigma | S3014 | KH Buffer |
Sodium Dodecyl Sulfate | Sigma Aldrich | L3771 | Lysis buffer |
Triton X-100 | Sigma Aldrich | T8787 | MTT Assay / Lysis buffer |