我们提出协议和分析方法,以建立共适应接口,在闭环中流式传输、参数化、分析和修改人体和心脏信号。此设置接口信号来自人的外围和中枢神经系统,具有外部感官输入,以帮助跟踪生物物理变化。
开发感官替代和感官增强方法的领域旨在利用来自中枢神经系统 (CNS) 的信号控制外部目标。然而,更新由运动中交互式机构自行生成的外部信号的协议较少。在 dyadic 交换期间,将一种运动剂的身体-心脑生物律术相结合的方法很匮乏,以引导另一种运动剂的生物律法。实现这一壮举的部分挑战是使用具有不同物理单元的多式联运生物信号、不同的时间尺度和可变采样频率的设置的复杂性。
近年来,可穿戴生物传感器的出现,可以非侵入性地同时利用多个信号,除了改善大脑和/或身体机接口外,还为相互作用的 dyad 的外围信号重新参数化和更新开辟了可能性。在这里,我们介绍一个共适应接口,使用生物传感器更新活泼的躯体运动输出(包括运动学和心率):参数化随机生物信号,声化此输出,并以重新参数化的形式作为维苏/音频动感再加法输入。我们使用两种类型的相互作用来说明这些方法,一种涉及两个人,另一种涉及人类及其头像近乎实时的交互。我们讨论新方法,在可能的新方法的背景下,衡量外部输入对内部体感官-运动控制的影响。
自然闭环控制器
感官运动信息在大脑和身体之间不断流动,产生组织良好、协调良好的行为。这种行为可以研究,同时专注于个人的行动单独,如在独白风格(图1A),或在复杂的动态行动,在两个代理在dyad共享,如在对话风格(图1B)。然而,第三个选择是在人机闭环接口(图1C)的上下文中,通过代理控制器评估这种复杂的交互。这种界面可以跟踪dyad中每个代理所促成的瞬间运动波动,以及它们同步相互作用中自我产生的凝聚力类型,从而帮助以理想的方式引导dyad的节奏。
图1:不同形式的控制。 (A)自我大脑控制的界面依赖于人的大脑和人自身身体之间的闭环关系,这种关系可以以”独白”风格自我调节和自我互动。此模式尝试控制自生成的运动,或者它也可能旨在控制外部设备。(B) “对话”风格控制是针对两个相互互动的舞者,通过身体的束咒和转弯来控制彼此的动作。(C) dyad 的”第三方”对话控制由计算机界面进行调解,该界面利用两个舞者的生物信号,对生物信号进行参数化,并以音频和/或视觉作为感官指导的形式以重新参数化的形式反馈给舞者。此处介绍的例子中的重新参数化是使用音频或视觉反馈实现的,通过其中一个舞者的实时动感运动输出来影响另一个:或两个舞者,轮流在一些交替的模式。请单击此处查看此图的较大版本。
这种方法的总体目标是表明,有可能利用、参数化和重新参数化运动中身体生物恒湿活动的瞬间波动,因为两个制剂进行可能涉及两个人或一个人及其自我移动头像的dyadic交换。
在过去的1、2、3中,对大脑如何控制行动和预测其感觉后果的调查产生了许多理论研究,并产生了各种神经运动控制模型4、5、6、7、8。在这个多学科领域,有一项研究涉及开发闭环脑机或脑-计算机接口。这些类型的设置提供了利用和调整 CNS 信号以控制外部设备的方法,例如机械臂 9、10、11、外骨骼12、计算机屏幕上的光标13(除其他外)。所有这些外部设备共享它们没有自己的智能的属性。相反,大脑试图控制它们确实有,大脑面临的部分问题是学习如何预测它在这些设备中产生的运动的后果(例如光标的运动,机械臂的运动等),同时产生其他支持性运动,以动感再造的形式促进整体感官运动反馈。通常,这些界面的首要目标是帮助大脑背后的人绕过损伤或紊乱,恢复他/她有意的想法转化为外在装置的自愿控制的身体行为。然而,不太常见的是界面的发展,试图引导身体在运动中的运动。
最初对脑机界面的大部分研究都集中在中枢神经系统(CNS)对身体部位的控制上,这些部位可以完成目标导向动作9、14、15、16、17。然而,还有其他情况,即使用来自外围神经系统 (PNS) 活动的信号,包括自体神经系统 (ANS) 的信号,其信息足以影响和引导外部代理的信号,包括另一个人类或头像,甚至相互作用的人类(如图 1C)。与机械臂或光标不同,本例中的另一个代理具有由大脑驱动的智能(在人与人运动或另一个代理的头像中,在相互作用的人类 dyad 的情况下)。
一种与dyadic交换形成共适应闭环接口的环境的设置可能可用于干预神经系统的紊乱,根据这些疾病,大脑无法自愿地控制自己的身体,尽管没有在物理上切断CNS和PNS之间的桥梁。这可能是由于嘈杂的外周信号,通过反馈回路,以帮助大脑不断监测和调整自己的自生生物律可能已被中断的情况。这种情况出现在帕金森病患者18,19,或自闭症谱系障碍的参与者与多余的噪音在他们的运动输出。事实上,在这两种情况下,我们已量化了从20、21、22和心脏23的预定动作速度中产生的返回动能信号中的噪声与信号比。在这种情况下,试图掌握外部信号的大脑控制,同时试图控制身体的运动,可能会导致从重新进入(再发音)的信息流的自我反应信号,大脑从连续(活泼的)运动流在外围接收。事实上,这种自生成的通风电机流中出现的瞬间波动包含着重要的信息,有助于预测有目的的行动的感官后果。当此反馈被噪音损坏时,很难预测地更新控制信号,并使用物理行为桥接故意计划。
如果我们将这种反馈循环扩展到其他代理,并通过第三方(图 1C)控制人和代理的互动,我们可能有机会在近乎实时的情况下指导对方的性能。这将为我们提供概念的证明,即我们需要扩展共适应脑体或脑机界面的概念,以治疗神经系统的紊乱,这些疾病导致精神意图对身体意志的实现不佳。
有目的的行动有后果,其特点正是运动随机签名,是上下文依赖,并能够推断出心理意图的水平与高度肯定25,26。因此,一种利用 dyadic 交换来交换以前以人为中心的方法来处理大脑机器或大脑计算机接口的新方法的一个优点是,我们可以增强控制信号,将主要在人意识之下、在不同意图水平下发生的身体和心脏生物节律包括在内。这样,我们抑制了在适应脑光标控制过程中意识控制往往唤起的反应性干扰。我们可以通过对可以访问的各种信号进行参数化来增加预测过程的确定性。沿着这些路线,先前的工作是使用大脑和身体信号同时存在于27、28、29:但是,由大脑身体信号捕获的dyadic相互作用的工作仍然很少。此外,现成的文献尚未界定在充分认识下进行的蓄意行动部分与因故意行动而自发发生的过渡性动议之间的区别。在这里,我们在戏剧交流的背景下做出这种区分,并提供新的方法来研究这种二分法32,同时提供舞蹈空间中编排(故意)与即兴(自发)动作的例子。
由于感官-电机集成和转换过程中的传导和传输延迟,有必要建立这样的预测代码,学会以高度的确定性预测即将到来的感官输入。为此,重要的是能够描述在不断更新的动感再造流中从信号中产生的噪声与信号比率的演变。然后,我们需要制定协议,系统地测量电机变异性的变化。变化性在传出的通风电机流34的瞬间波动中是固有的。由于这些信号是非静止的,对上下文变化35,36敏感,因此可以对任务上下文的更改所发生的变化进行参数化。为了最大限度地减少来自有意识的 CNS 控制产生的反应信号的干扰,并唤起通风 PNS 电机流中的可量化变化,我们在此引入了一个代理闭环接口,通过招募主要在人的自我意识下发生变化的外围信号间接改变感官反馈。然后,我们展示如何系统地测量感官操作后发生的变化,使用可视化代理闭环接口间接唤起两个代理的过程的随机分析。
引入代理闭环控制器
外围信号中存在的感官-电机变异性构成了丰富的信息来源,可以指导神经系统的性能,同时在不同的上下文中学习、适应和泛化。这些信号部分地成为 CNS 试图自愿控制行动的副产品,但并非控制器的直接目标。由于人与他人自然相互作用,外围信号可以被利用、标准化和重新参数化:这意味着,它们的变化可以参数化和系统地转移,因为一个改变的发泡电机流,不断重新进入系统作为动能重新调用。在这样的设置中,我们可以可视化随机变化,高精度地捕捉丰富的信号,否则将丢失给更传统的技术所表现的盛大平均值类型。
为了在新的统计平台下实现变化的特征,我们在这里引入了协议、标准化的数据类型和分析,允许外部感官输入(听觉和视觉)与内部自生成的电机信号集成,而此人则自然地与另一个人或与人的头像版本进行交互。从这个意义上说,因为我们的目标是控制外围信号(而不是修改CNS信号直接控制外部设备或介质),我们创造了一个代理闭环接口(图2)。我们的目标是描述 PNS 的随机信号的变化,因为它们会影响 CNS 中的变化。
图2:使用闭环多模态接口对两个舞者(舞蹈莎莎)进行代理控制,与(B)通过利用周围神经系统信号并将其重新参数化为声音和/或视觉输入来控制的互动人工人头像dyad。(C) 使用新的标准化数据类型(微运动峰值、彩信)的声化概念,源自生物恒湿信号振幅/定时转换为振动,然后转换为声音的瞬时波动。从物理学中,我们借用了调叉输出声波作为可测量振动产生的压缩和稀有事实的概念。声波的示意图表示压力随着时间的调整而与声化的峰值浓度平行调节。物理信号的示例,以接受从彩信到振动和声化的拟议管道。我们使用心率信号作为接口的输入。这需要信号振幅的波动,每 4 秒运动一次与运动开始对齐,并生成代表振动的彩信列车。彩信的尖峰列车从 [0,1] 标准化。尖峰的颜色根据色条,表示信号的强度。然后,我们使用 Max 对这些振动进行声子化。此声化信号可用于在 A 中播放,或在 B 中更改与头像的交互。此外,在 B 中,在通过 ROI 时,可以将声音嵌入环境中并使用身体位置在感兴趣的区域(ROI) 播放声音,或调节音频功能,作为与 RoI 的距离、锚定在另一身体部位的主体部分的速度或加速度的函数。请单击此处查看此图的较大版本。
PNS信号可以利用可穿戴传感技术进行非侵入性利用,该技术共同记录来自神经系统不同功能层的多模式透水流,从自主到自愿32。然后,我们可以几乎实时测量此类流的变化,并选择那些更改可增强信号与噪声比的流。然后,这种发泡的电机信号可以通过其他形式的感官引导(如听觉、视觉等)来增强。因为 PNS 信号是完全意识的替罪羊,因此它们更容易操作,没有太大的阻力 38。因此,我们使用它们来帮助引导人的表现,以可能减轻对人类系统的压力的方式。
构建界面
我们介绍由闭环共适应多式联运接口调解的代理控制的设计。此接口引导实时多感官反馈。 图3 显示一般设计。
闭环接口的特点是5个主要步骤。第一步是从多个可穿戴仪器收集多模态数据。第二步是通过MoBI集团39开发的实验室流层(LSL,https://github.com/sccn/labstreaminglayer)平台同步多模式流。第三步是将 LSL 数据结构流式传输到 Python、MATLAB 或其他编程语言界面,以集成信号,并实时对生理特征(与我们的实验设置相关)进行参数化。 第四步是重新参数化从研究的身体信号的连续流中提取的选定特征,并使用选择的感官模式(如视觉、听觉、动感等)增强它,以声音或视觉效果的形式播放,以增强、替换或增强患者神经系统中有问题的感官模式。最后,第五步是重新评估系统实时生成的信号的随机特征,选择在预测即将发生的动作的感官后果时,将身体波动的随机变化带到高度确定性(噪声最小化)的制度。 此循环在整个实验期间持续播放,重点是选定的信号,同时存储完整的性能供后续分析(如图 3的示意图所示,见 40、41、42、43、44、45、46、47,例如后分析)。
图3:多模态外围驱动的闭环接口概念的架构。 收集各种身体信号 – 运动数据,心脏和大脑活动(第1步)。LSL 用于同步共同注册和流式传输来自各种设备的数据到接口(第 2 步)。Python/MATLAB/C# 代码用于使用标准化的数据类型和通用比例连续参数化信号波动,从而能够选择最足以抑制系统不确定性的感官制导源(第 3 步)。通过选定的通道实时增强信号传输,然后允许重新参数化重新进入感官信号,以集成在连续电机流中,并增强丢失或损坏的输入流(感官替换步骤 4)。连续重新评估关闭循环(第 5 步),我们将所有数据保存以供将来进行其他分析。请单击此处查看此图的较大版本。
以下部分介绍了如何构建闭环接口的通用协议( 如图 3所述),并描述了两个实验接口(详述在补充材料中呈现)的代表性结果,涉及两个舞者之间的物理 dyadic 交互(真正的闭环系统)和人和头像之间的虚拟 dyadic 交互(人工闭环系统)。
本文通过闭环共适应、交互式、多模式接口引入代理控制的概念,在 dyadic 交换环境中,利用、参数化和重新参数化人的外围信号。我们旨在描述人生物律律波动中的随机变化,并使变化参数化。此外,我们旨在系统地引导其生物造血的随机特征在近实时内达到定点的噪声到信号系统水平。
我们提出了构建满足 5 个核心元素的闭环接口的通用协议:1) 使用各种仪器和技术收集来自 CNS、PNS 和 ANS 的多个身体数据:2) 数据的同步记录和流式处理:3) 对所选信号进行实时分析:4) 使用提取身体信号的生理特征创建感官增强(音频、视觉等):和5)人类系统的连续跟踪和并行感官增强关闭人类与系统相互作用的循环。
通用协议应用于两个示例接口。第一个调查了两个人体特工之间的双重交换,第二个调查了人类和化身特工之间的dyadic交换。这两种类型的 dyads 用于提供概念证明,即外围信号可以实时系统地更改,并且这些随机变化可以精确跟踪。一个 dyad 由两个参与者进行物理交互组成,另一个参与者以 3D 渲染化身的形式与虚拟代理进行交互,该虚拟代理赋予了人的动作和这些实时动作的更改变体。这种改变是由听觉和/或视觉感官输入在增强的感觉设置驱动的交互式操作引起的。在真正的 dyad 和人工 dyad 中,我们演示了远程移动外周信号的可行性,包括身体生物律和心跳中的自主信号。
我们提出了新的实验方案,以探测这种变化的发热电机变异性,因为动感信号流正在纵和重新参数化在接近实时。这种重新进入的信息(动感再造48)被证明是有价值的,以实时改变系统性能。它们包含有关动作感官后果的信息,我们可以使用此处介绍的方法精确跟踪这些信息。
我们还展示了数据类型和统计方法,以标准化我们的分析。我们提供了多种可视化工具,以演示在不同上下文中自然演变的生理活动的实时变化,通过经验指导的统计推论,有助于解释自生成和自控神经系统信号。重要的是,代理控制器所唤起的更改是顺利的,但可量化的,因此支持了外围活动在不止一种方式中是有用的这一概念。虽然我们可以使用市售的无线可穿戴传感器实现这些方法,但我们可以系统地诱导性能变化,这些变化可以在生物物理节奏中捕获,而无需强调系统。重要的是将我们的方法转化为临床领域,并将其用作测试床,以开发新的干预模型(例如,在自闭症 49中使用增强现实时)。在此类模型中,我们将能够跟踪和量化人自然行为的感官后果,因为感官输入被精确操纵,输出在近乎实时的时间内进行参数化和重新参数化。
我们提供此协议作为一般模型,利用人类神经系统自产生的各种生物恒湿活动,并利用无线可穿戴设备进行非侵入性利用。虽然我们在本文中使用了一组生物传感器来注册电子EG、心电图和运动学,但记录、同步和分析信号的方法是通用的。因此,接口可以集成其他技术。此外,协议可以修改,包括其他自然主义的行动和环境,延伸到医疗领域。因为我们的目标是自然行为,我们开发的设置可用于俏皮的设置(例如,涉及儿童和家长。
神经系统的一些疾病可以受益于这种俏皮的控制问题的方法。在我们在这里展示的两种类型的 dyadic 交互中,参与者可以瞄准有意识地控制音乐,而代理控制器则使用外围输出无意识地操纵和系统地转移其签名。因为科学家花了数年时间对伽马参数平面和相应的伽马时刻空间进行测绘,跨越不同年龄组(新生儿至78岁),年龄在19岁、50岁、51岁、52岁、53岁和以下(自闭症, 帕金森病,中风,昏迷状态和耳聋),对于不同程度的控制(自愿,自动,自发,非自愿和自主)25,47,54,他们有经验测量的标准,表示在伽玛空间的痉挛性特征应该是一个良好的预测控制。先前的研究也显示,我们知道参数在哪里,在自发随机噪音的存在来自人类神经系统的自生成节奏7,19,55,56。因此,在将生物恒湿电机噪声降至最低的优化模式中,我们可以以驱动信号为目标,从而达到伽玛空间的目标区域,其中每个人 PDF 家族的形状和分散特征有利于高信号与噪声比率和预测值。从这个意义上说,我们不会丢失总数据,而是有效地利用它推动系统在特定情况下达到理想的噪音水平。
在临床或培训环境中,Dyadic 相互作用无处不在。它们可能发生在培训师和受训者之间:医生和病人;临床治疗师和病人;它们也可能发生在涉及转化科学的研究环境中,并让研究人员和参与者参与进来。当前协议的优点之一是,虽然它们专为 dyads 设计,但它们也是个性化的。因此,根据人的运动范围、感官处理时间范围,以及考虑信号振幅在人神经系统功能层次结构中的范围,可以根据人的最佳能力和倾向来调整共适应互。随着随机轨迹的出现和及时演变,也有可能确定签名的机会率,并利用该时间系列预测几个即将到来的事件以及可能的感官后果。
最后,闭环接口甚至可以在艺术界使用。他们可以为表演艺术家提供新的途径,以产生计算驱动的现代舞蹈形式,技术舞蹈和新的可视化和身体表达的声化形式。在这种情况下,舞者的身体可以变成一个感官驱动的仪器,通过声化和可视化的自生成的生物恒生活动灵活探索不同的感官模式,如先前在这方面的工作40,41,43,46。这样的表演可以增强舞蹈演员在舞台上的角色,让观众体验到超越可见动作的微妙身体信号。
这项技术的几个方面需要进一步开发和测试,以优化其在实时设置中的使用。同步流需要高速 CPU/GPU 电源和内存容量,以便在预测正在进行的电机命令的感官后果时真正利用获得时间和领先一步的概念。设备的采样率应具有可比性,以便能够真正对齐信号,进行适当的感官融合,并探索通过神经系统的不同渠道传输信息。这些是此新界面中存在的一些限制。
总之,这项工作提供了一个新的概念,以改善我们的身体系统的控制,同时采用潜意识的手段,尽管如此,允许系统地标准化的结果测量随机变化。
The authors have nothing to disclose.
我们感谢那些自愿花时间帮助开展这项研究的学生:Kan Anant 和相空间公司为我们提供了描述设置所需的图像和视频:和神经电子允许我们使用来自渠道的材料 www.youtube.com/c/neuroelectrics/ 和他们的手册。最后,我们感谢罗格斯认知科学中心的托马斯·帕帕托马斯教授在手稿提交阶段给予的专业支持,南希·卢里·马克斯家庭基金会职业发展奖,以及格隆德利斯基金会对VK的奖励。
贡献
概念化、VK和电子BT:方法论,EBT:软件、VK、EBT、SK:验证、VK和SK:正式分析,VK:调查,VK,电子BT,SK:资源、EBT;数据策划,VK:写作——初稿准备,EBT:写作:审查和编辑,VK,SK.可视化、VK和视网:监督,欧洲自全面禁试条约;项目管理,EBT:资助收购, Ebt 所有作者都阅读并同意了手稿的出版版本。
Enobio 32 | Enobio | Hardware for EEG data collection | |
Enobio ECG Extention | Enobio | Hardware for ECG data collection | |
LabStreamingLayer (LSL) | Synchronization and streaming of data | ||
Matlab | Mathwork | Analysis and processing of data | |
Max | Cycling'74 | Sonification of bodily information | |
NIC.2 | Enobio | Software for EEG and ECG data collection | |
PhaseSpace Impulse | PhaseSpace | Hardware for collection of the kinematic data (position, speed, acceleration) | |
Python3 | Python | Analysis and processing of data | |
Recap | PhaseSpace | Software for collection of the kinematic data (position, speed, acceleration) |