We present protocols for generating acute and chronic experimental models of tic expression in freely behaving rats. The models are based on striatal cannula implantation and subsequent GABAA antagonist application. The acute model uses transient injections whereas the chronic model utilizes prolonged infusions via a subcutaneous implanted mini-osmotic pump.
Motor tics are sudden, rapid, recurrent movements that are the key symptoms of Tourette syndrome and other tic disorders. The pathophysiology of tic generation is associated with abnormal inhibition of the basal ganglia, particularly its primary input structure, the striatum. In animal models of both rodents and non-human primates, local application of GABAA antagonists, such as bicuculline and picrotoxin, into the motor parts of the striatum induces local disinhibition resulting in the expression of motor tics.
Here, we present acute and chronic models of motor tics in rats. In the acute model, bicuculline microinjections through a cannula implanted in the dorsal striatum elicit the expression of tics lasting for short time periods of up to an hour. The chronic model is an alternative enabling the extension of tic expression to periods of several days or even weeks, utilizing continuous infusion of bicuculline via a sub-cutaneous mini-osmotic pump.
The models enable the study of the behavioral and neural mechanisms of tic generation throughout the cortico-basal ganglia pathway. The models support the implantation of additional recording and stimulation devices in addition to the injection cannulas, thus allowing for a wide variety of usages such as electrical and optical stimulation and electrophysiological recordings. Each method has different advantages and shortcomings: the acute model enables the comparison of the kinematic properties of movement and the corresponding electrophysiological changes before, during and after tic expression and the effects of short-term modulators on tic expression. This acute model is simple to establish; however, it is limited to a short period of time. The chronic model, while more complex, makes feasible the study of tic dynamics and behavioral effects on tic expression over prolonged periods. Thus, the type of empirical query drives the choice between these two complementary models of tic expression.
Tics are the defining symptom of Tourette syndrome (TS) and other tic disorders. Tics are described as sudden, rapid, recurrent movements (motor tics), or vocalizations (vocal tics)1. Tic expression typically fluctuates in its temporal (frequency)2 and spatial (intensity, body location)3 properties over multiple time scales (hours, days, months, and years). These changes are affected by different factors, such as environmental features4,5, behavioral states6,7, and voluntary and temporary suppression8.
Although the neuronal mechanism governing motor tics is still not fully understood, an increasing number of theoretical and experimental studies have provided new evidence as to its nature9. Currently, the pathophysiology of tic generation is thought to involve the cortico-basal ganglia (CBG) loop, and specifically is associated with abnormal inhibition of the striatum, the primary basal ganglia input nucleus10,11,12. Previous studies in rodents and primates have demonstrated that the striatum can be disinhibited by local application of different GABAA antagonists, such as bicuculline and picrotoxin13,14,15,16,17,18. This pharmacological intervention leads to transient motor tic expression in the contralateral side to the injection, thus establishing a robust acute model of tic disorders with face and construct validity. The acute model is simple to induce and makes it possible to study the effects of short-term modulation such as electrical and optical stimulation concurrent with electrophysiological and kinematic recordings before, during and after tic expression. However, the acute model is limited to the short time period following the injection. Based on the acute model, we recently proposed a chronic model of tic generation in rats that utilizes a prolonged, fixed-rate infusion of bicuculline to the striatum via a subcutaneous-implanted mini-osmotic pump19. This model extends the period of tic expression to multiple days/weeks. The constant release of bicuculline over a lengthy period of time allows for the examination of the effects of a variety of factors such as pharmacological treatments and behavioral states on tic expression.
Here, we present protocols for generating the acute and chronic models of tic expression in rats. As a function of the specific research question, the protocols enable the fine-tuning of the parameters including unilateral versus bilateral implantation, the site of the tics (according to the somatotopic organization of the striatum)18 and the angle of the implant-cannula (depending on the location of additional implanted devices). The method used in the chronic model is partially based on commercial products but with critical adjustments to fit the tic model. This article details the adjustments needed to custom tailor these tic models.
All procedures were approved and supervised by the Institutional Animal Care and Use Committee and adhered to the National Institutes of Health Guide for the Care and Use of Laboratory Animals and the Bar-Ilan University Guidelines for the Use and Care of Laboratory Animals in Research. This protocol was approved by the National Committee for Experiments in Laboratory Animals at the Ministry of Health.
NOTE: This protocol utilizes female Long-Evans rats (acute and chronic models) and female Sprague Dawley rats (acute model) aged 3-10 months, 280-350 g. The implementation of these models in other strains, weights or ages should be tested carefully for different reaction.
1. Acute model
2. Chronic model
Protocols for generating the acute and chronic models for tic induction in rats were presented above. The protocols cover the full preparation for surgery and experiments (Figure 1 for the acute model, Figure 2 for the chronic model). The application of bicuculline into the motor areas of the striatum results in the expression of ongoing motor tics. Tics appear on the contralateral side to the application and are characterized by brief and repetitive muscle contractions. After bicuculline application to the anterior parts of the striatum, tics are typically expressed in the rat’s forelimb, head and/or jaw, whereas after posterior injections, tics are expressed in the hindlimb18. In the acute model (Figure 3A), tics start to appear several minutes after the bicuculline microinjection, last for dozens of minutes and eventually decay and cease18. In the chronic model (Figure 3B), tics typically start to appear on the first day following the bicuculline-filled pump implantation19. Tics fluctuate during the day and are most clearly observable during the quiet-waking state19. Tic expression remains ongoing over a period of multiple days and up to a few weeks, depending on the type of mini-osmotic pump.
Tic expression may be monitored and quantified by simultaneous recordings of video, kinematic sensors and neural activity15,19,22. Motor tics have a stereotypic kinematic signature that can be detected in the accelerometer and gyroscope signals (Figure 4), thus enabling the measurement of their frequency and intensity. Tic timing can also be assessed using the local field potential (LFP) signal throughout the CBG pathway, because of the appearance of large amplitude LFP transient spikes15 (Figure 4). The results presented here and additional implementations of the acute and chronic models are described in detail in our previous works15,18,19,22,23. The striatal disinhibition model in both rodents and non-human primates replicated key properties of tic expression in Tourette syndrome and other tic disorders concerning both motor15,18 and vocal24 tics and their expression following a different behavioral, environmental and pharmacological interventions22,25,26. However, existing findings form only the tip of the iceberg of the complex manifestation of tic disorders. We believe that the model will enable the study of a wide range of such factors, ranging from environmental effects such as sensory input, behavioral effects such as concurrent action performance and clinical effects such as the response to different treatments.
Figure 1: Schematic representation of the custom-made devices used in the acute model. (1) Implant-cannula which is chronically implanted in the striatum. (2) Dummy, a removable inner wire, is used to seal the implanted cannula. (3) Injector, composed of (3.1) flexible tube and (3.2) injection-cannula, is used for acute delivery of the bicuculline into the striatum. (4) Cannula-holder, composed of (4.1) base and (4.2) lead, is used to hold the implant-cannula during the implantation. Please click here to view a larger version of this figure.
Figure 2: Schematic representation of the custom-made devices and the mini-osmotic pump used in the chronic model. (1) Cannula-guide is used to hold the infusion-cannula during the implantation. (2) Infusion-cannula is chronically implanted in the striatum. (3) Flexible catheter-tubing connects the infusion-cannula to the mini-osmotic pump. (4) Tubing-adapter connects the flexible catheter-tubing to the flow moderator. (5) Flow-moderator is composed of (5.1) short cannula-part, (5.2) white flange and (5.3) long cannula-part. Please click here to view a larger version of this figure.
Figure 3: Schematic representation of the experimental setups. In the acute model, tics are induced following a bicuculline injection using a pump-infusion machine (A). In the chronic model, ongoing tics are achieved by prolonged infusion of bicuculline via mini-osmotic pump implantation (B). Please click here to view a larger version of this figure.
Figure 4: An example of synchronized signals from the kinematic and neurophysiological recordings. Accelerometer, gyroscope and the corresponding LFP from the primary motor cortex during tic expression. Dashed gray line: tic onset time as detected by the LFP signal. Please click here to view a larger version of this figure.
In this manuscript, we detailed the protocols of the acute and chronic models for tic induction in a freely behaving rat. These protocols describe the preparation of all components, the surgery and the experimental process which can be adapted for customization to meet specific research needs. The primary principle underlying these models is the direct local application of bicuculline to the motor areas of the striatum, which is known to play a key role in the pathophysiology of tic disorders10,11,12. In both models, bicuculline is delivered to the target through custom-made implanted cannulas. The specific cannula implantation target depends on the desired body location of tic expression. The striatum is somatotopically organized27,28,29,30. Application of bicuculline to its anterior parts leads to tic expression in the forelimb, jaw, and head, whereas its application to the posterior parts results in hindlimb tics18. Moreover, application to the ventral striatum (nucleus accumbens – NAc) leads to hyperactivity31. The models enable the implantation of cannulas in both hemispheres and in both striatal targets for simultaneous injection to produce bilateral symptoms. This method is not only applicable to tic expression models, but also valid in other neuroscience models that require injection of neuroactive compounds.
In the acute model, we suggest implanting the cannula 2 mm (0.079'') above the injection target to prevent tissue damage to the target area. To minimize subsequent damage by the injection-cannula, we use a thin 30 G tube to reach the final target. Note that multiple injections to the same target will eventually lead to tissue necrosis from mechanical stress, which will cause decreased tic expression. One possible solution is to insert the injector to deeper targets during the subsequent injections, as long as they remain localized in the motor areas of the striatum. This tissue necrosis does not occur in the chronic model, since the bicuculline infusion is ongoing through a static directly implanted infusion-cannula into the striatal target. To minimize potential tissue damage from chronic infusion-cannula implantation, we also used a 30 G tube. However, to connect the infusion-cannula to the flow-moderator via flexible-catheter tubing, we needed to use a tubing-adapter, creating a potential failing point in the process. Thicker flexible-catheter tubing can be used to fit the flow-moderator, leading to a reasonable cost of a larger tissue damage from the larger infusion-cannula.
Ongoing research over the last 10 years has enabled us to define specific concentrations and delivery rates of bicuculline15,18,22,23, resulting in a reproducible behavioral phenomenon of observable tic expression. Deviation from these values towards higher volumes, concentrations or injection rates, may cause episodic seizures15,18,32 and unilateral rotations of the rats. Lower concentrations result in more subtle, less detectable tics, expressed over shorter periods of time. In the chronic model, no seizures were observed throughout the whole period; however, extensive tic expression and tendency to unilateral rotations were observed on the first day after the bicuculline-filled pump implantation, which stabilized during the second day. This, combined with post brain surgery recovery, interferes with the animal’s comfort level and wellbeing. To dissociate the recovery period from tic expression, we suggest implanting an ACSF-filled pump first19. This period of ACSF infusion can also be used to conduct control experiments prior to tic induction. Control experimental sessions may also be carried out in the acute model, utilizing ACSF injections18,33.
Both the acute and the chronic models can be used to study the kinematic characteristics and neural correlates of tic expression. Tics can be identified by frame-by-frame offline video analysis, which however is time-consuming and less accurate. More sensitive evaluation methods include electromyography (EMG) and kinematic sensors (accelerometer and gyroscopes) (Figure 4). For this purpose, the kinematic devices need to be located near the tic-expressing site on the body for accurate movement assessment. The neural correlates of tic expression may be captured by neurophysiological recordings throughout the CBG pathway (Figure 4). When considering the implantation of additional recording devices, their locations both inside and outside the brain need to be planned carefully to prevent interference with the injection.
The nature of the experimental query should dictate the choice of model of tic expression. The acute model is simple and easy to implement. Multiple transient injections can be conducted over a relatively long period of time, can be run simultaneously in several brain regions and enable combining control and experimental sessions. The chronic model is more complicated and requires daily monitoring of the rat's wellbeing. Yet, the constant and prolonged bicuculline application provides the opportunity to address the dynamics of tic expression and its modulation over time.
The authors have nothing to disclose.
This study was supported in part by an Israel Science Foundation (ISF) grant (297/18). The authors thank M. Bronfeld for establishing the acute rodent model and M. Israelashvili for her comments.
Anchor screws | Micro Fasteners | SMPPS0002 | #0 x 1/8 – Pan Head Sheet Metal Screws |
Bicuculline methiodide | Sigma Aldrich | 14343 | |
Cyanoacrylate (CA) accelerator | Zap | PT29 | |
Cyanoacrylate (CA) glue | BSI | IC-2000 | This glue was found to be stronger than others |
Dental cement | Coltene | H00322 | Hygenic Perm Repair Material Reline Resin Self Cure |
Glue gel | Loctite | Ultra Gel Control | |
Hemostat | WPI | 501242 | Any hemostat sized approximately 14 cm would be sufficient |
Hypo-tube, extra-thin wall 25G | Component supply company | HTX-25X | |
Hypo-tube, regular wall 22G | Component supply company | HTX-22R | |
Hypo-tube, regular wall 30G | Component supply company | HTX-30R | |
Infusion pump machine | New Era Pump Systems | NE-1000 | |
Mini-osmotic pump | ALZET | 2001 | 1.0µl per hour, 7 days |
PE compatible adhesive | CEYS | Special difficult plastics (suitable for PE) | |
PE-10 Catheter Tubing | ALZET | PE-10 | ID = 0.28mm, OD = 0.61mm |
Precision glass microsyringe, 10µl | Hamilton | 80065 | 1701 RNR 10µl syr (22s/51/3) |
Tissue adhesive | 3M | 1469Sb | Vetbond |
Tubing-adapter | CMA | 3409500 | |
Tygon micro bore tubing, 0.02 inch ID * 0.06 OD | Component supply company | TND80-020 | |
Wire 0.005-inch | Component supply company | GWX-0050 | |
Wire 0.013-inch | Component supply company | GWX-0130 |