Summary

从高梁叶组织中分离出希石,用于自上而下质量光谱分析潜在的表观遗传标记

Published: March 04, 2021
doi:

Summary

该方案的制定是为了有效地从高梁叶材料中提取完整的组织结石,用于分析结石转化后的修饰,这些修饰可以作为潜在的表观遗传标记,以帮助工程抗旱作物。

Abstract

石质属于真核生物中高度保存的蛋白质家族。他们把DNA包装成核糖体作为染色质的功能单位。分子的转化后修改(PTM)具有高度的动态性,可以通过酶添加或去除,在调节基因表达方面发挥着关键作用。在植物中,表观遗传因素,包括层石PTM,与它们对环境的适应反应有关。了解表观遗传控制的分子机制可以为创新的生物工程解决方案带来前所未有的机遇。在这里,我们描述了一个从高梁叶组织中分离核和纯化组织色调的协议。提取的组织结石可以通过自上而下的质谱(MS)加上在线反相(RP)液体色谱(LC)以完整的形式进行分析。可以很容易地识别同一组蛋白上多个 PTM 的组合和形态学。此外,还可使用自上而下的 LC-MS 工作流检测石材尾部剪报,从而产生核心结石(H4、H2A、H2B、H3)的全球 PTM 轮廓。我们以前曾将此协议应用于从大规模实地研究中收集的高梁叶组织中分析平石 PTM,旨在识别抗旱的表观遗传标记。该方案有可能被调整和优化为色素免疫沉淀测序(ChIP-seq),或研究类似植物中的平石PTM。

Introduction

干旱的严重程度和频率的增加预计将影响谷物作物的产量1,2。高梁是一种谷物食品和能源作物,以其抗水限水的特殊能力而闻名于。我们正在对干旱压力、植物发育和高梁(高梁双色(L.)莫恩奇植物的表观遗传学之间的相互作用进行机械理解。我们先前的工作已经证明植物和里佐圈微生物群在干旱适应和分子水平5,6,7的反应之间有很强的联系。这项研究将为利用表观遗传学工程使作物适应未来的气候情景铺平道路。作为理解表观遗传学努力的一部分,我们的目标是研究影响植物生物体内基因表达的蛋白质标记。

组蛋白属于真核生物中高度保存的蛋白质家族,将DNA包装成核糖体作为染色质的基本单位。组蛋白的转化后修改 (PTM) 受到动态调节,以控制色素结构并影响基因表达。像其他表观遗传因素,包括DNA甲基化,石质PTM在许多生物过程8,9起着重要的作用。基于抗体的检测,如西方污点,已被广泛用于识别和量化石斑点。此外,通过色素免疫沉淀——测序(ChIP-seq)10,可以有效地探究组织PTM和DNA的相互作用。在 ChIP-seq 中,具有特定靶向层蛋白 PTM 的色素通过针对该特定 PTM 的抗体而富含。然后,DNA片段可以从富集的染色质中释放并测序。与靶向层石PTM相互作用的基因区域被揭示出来。然而,所有这些实验严重依赖高质量的抗体。对于一些类结石变异/同源或PTM组合,开发强健的抗体可能极具挑战性(尤其是对于多个PTM)。此外,只有当已知目标的石块PTM时,才能开发抗体。11因此,需要采用非目标的全球平石 PTM 分析的替代方法。

质谱学 (MS) 是一种补充方法,用于描述平石 PTM 的特征,包括未知的 PTM,其中抗体不可用11,12。在液相色谱 (LC) 分离和 MS 检测之前,成熟的”自下而上”MS 工作流使用蛋白酶将蛋白质消化成小肽。由于类固酮有大量基本残留物(赖氨酸和精氨酸),标准自下而上的工作流程中的丁普辛消化(赖氨酸和精氨酸特有的蛋白酶)将蛋白质切成非常短的肽。短肽在技术上很难通过标准LC-MS进行分析,并且不保存有关多个PTM的连接性和口感学的信息。使用其他酶或化学标签来阻止赖氨酸产生更长的肽,更适合组别石PTM13,14的特征。

或者,消化步骤可以完全省略。在这种”自上而下”的方法中,完整的蛋白质离子在在线LC分离后通过电喷电离(ESI)引入MS,产生完整的石蛋白形成体的离子。此外,在质谱仪中可以分离和分割感兴趣的离子(即蛋白状体),以产生用于识别和PTM定位的序列离子。因此,自上而下的MS具有保存蛋白突起级信息和捕获多个PTM和终端截断的连接性在同一蛋白回形15,16的优势。自上而下的实验也可以提供定量信息,并提供完整的蛋白质水平17的生物标志物的见解。在这里,我们描述了一个从高梁叶中提取石块并通过自上而下LC-MS分析完整发音的协议。

图 1 和图 2中显示的示例数据来自种植后第 2 周收集的高梁叶。 虽然预期产量会有所变化,但此协议通常对特定的样本条件不可知。同样的协议已经成功地用于高梁植物叶组织收集从种植后2,3,5,8,9和10周。

Protocol

1. 准备高梁叶材料 注:高梁植物生长在加州帕利尔的土壤中。 将植物中的高梁叶收集到50mL离心管中,并立即将管子冷冻在液氮中。通过从主耕种机中撕下第三和第四完全脱落的叶子来收集叶组织。注:有关现场状况、样本生长和收集的更多详细信息,请在已发布的报告18中找到。 用液氮磨叶,并立即转移到离心管。 将地叶存放在-…

Representative Results

按照协议,可以通过LC-MS分析提取和识别组织音。原始数据和处理结果可在 MassIVE (https://massive.ucsd.edu/) 通过加入获得: MSV000085770。根据来自代表性样本的 TopPIC 结果(也可从 MassIVE 获得),我们确定了 303 个组蛋白蛋白(106 H2A、72 H2B、103 H3 和 22 个 H4 蛋白石)。还检测到共同纯化的核糖体蛋白形成物,通常在LC早期排出。它们通常由已识别的蛋白形成物的 20% 组成,但不会与 LC 梯度后期的组蛋?…

Discussion

所提交的协议描述了如何从高梁叶(或更普遍的植物叶)样本中提取组织素。平均石材产量预计为每4-5克高梁叶材料2-20微克。这些材料足够纯净,用于LC-MS(主要是带~20%核糖体蛋白污染的组织石)的下游结石分析。由于样本变化或整个协议中可能处理不当/失败,可能会获得较低的产量。在核裂解步骤之前保持核的完整性至关重要:因此,在添加 NLB 之前,应避免攻击性涡流和管道。此外,从颗粒…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢罗纳德·摩尔和托马斯·菲尔莫尔帮助进行质谱学实验,感谢马修·梦露的数据沉积。这项研究由美国能源部(DOE)生物和环境研究资助,通过高梁(EPICON)的表观遗传控制抗旱项目,获得美国农业部(USDA)颁发的编号为DE-SC0014081的奖项:CRIS 2030-21430-008-00D),并通过联合生物能源研究所(JBEI),由能源部(DE-AC02-05CH11231)赞助的设施劳伦斯伯克利国家实验室和能源部。这项研究是利用环境分子科学实验室(EMSL)(网格.436923.9)进行的,该实验室是由生物和环境研究办公室赞助的能源部科学用户设施办公室。

Materials

Acetonitrile Fisher Chemical A955-4L
Dithiothreitol (DTT) Sigma 43815-5G
EDTA, 500mM Solution, pH 8.0 EMD Millipore Corp 324504-500mL
Formic Acid Thermo Scientific 28905
Guanidine Hydrochloride Sigma G3272-100G
MgCl2 Sigma M8266-100G
Potassium phosphate, dibasic Sigma P3786-100G
Protease Inhibitor Cocktail, cOmplete tablets Roche 5892791001
Sodium butyrate Sigma 303410-5G Used for histone deacetylase inhibitor
Sodium Chloride (NaCl) Sigma S1888
Sodium Fluoride Sigma S7020-100G Used for phosphatase inhibitor
Sodium Orthovanadate Sigma 450243-10G Used for phosphatase inhibitor
Sucrose Sigma S7903-5KG
Tris-HCl Fisher Scientific BP153-500 g
Triton X-100 Sigma T9284-100ML
Weak cation exchange resin, mesh 100-200 analytical (BioRex70) Bio-Rad 142-5842
Disposables
Chromatography column (Bio-Spin) BIO-RAD 732-6008
Mesh 100 filter cloth Millipore Sigma NY1H09000 This is part of the Sigma kit (catalog # CELLYTPN1) for plant nuclei extraction. Similar filters with the same mesh size can be used.
Micropipette tips (P20, P200, P1000) Sigma
Tube, 50mL/15mL, Centrifuge, Conical Genesee Scientific 28-103
Tube, Microcentrifuge, 1.5/2 mL Sigma
Equipment
Analytical Balance Fisher Scientific 01-912-401
Beakers (50mL – 2L)
Microcentrifuge with cooling Fisher Scientific 13-690-006
Micropipettes
Swinging-bucket centrifuge with cooling Fisher Scientific
Vortex Fisher Scientific 50-728-002
Water bath Sonicator Fisher Scientific 15-336-120

References

  1. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S. M. A. Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development. , 153-188 (2009).
  2. Dai, A. Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change. 2 (1), 45-65 (2011).
  3. Rooney, W. L., Blumenthal, J., Bean, B., Mullet, J. E. Designing sorghum as a dedicated bioenergy feedstock. Biofuels, Bioproducts and Biorefining. 1 (2), 147-157 (2007).
  4. Mullet, J. E., Klein, R. R., Klein, P. E. Sorghum bicolor – an important species for comparative grass genomics and a source of beneficial genes for agriculture. Current Opinion in Plant Biology. 5 (2), 118-121 (2002).
  5. Xu, L., et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proceedings of the National Academy of Sciences of the United States of America. 115 (18), 4284-4293 (2018).
  6. Gao, C., et al. Strong succession in arbuscular mycorrhizal fungal communities. ISME Journal. 13 (1), 214-226 (2019).
  7. Gao, C., et al. Fungal community assembly in drought-stressed sorghum shows stochasticity, selection, and universal ecological dynamics. Nature Communications. 11 (1), (2020).
  8. Bannister, A. J., Kouzarides, T. Regulation of chromatin by histone modifications. Cell Research. 21 (3), 381-395 (2011).
  9. Yuan, L., Liu, X., Luo, M., Yang, S., Wu, K. Involvement of histone modifications in plant abiotic stress responses. Journal of Integrative Plant Biology. 55 (10), 892-901 (2013).
  10. Park, P. J. ChIP-seq: advantages and challenges of a maturing technology. Nature Reviews. Genetics. 10 (10), 669-680 (2009).
  11. Huang, H., Lin, S., Garcia, B. A., Zhao, Y. Quantitative proteomic analysis of histone modifications. Chemical Reviews. 115 (6), 2376-2418 (2015).
  12. Moradian, A., Kalli, A., Sweredoski, M. J., Hess, S. The top-down, middle-down, and bottom-up mass spectrometry approaches for characterization of histone variants and their post-translational modifications. Proteomics. 14 (4-5), 489-497 (2014).
  13. Sidoli, S., Garcia, B. A. Characterization of individual histone posttranslational modifications and their combinatorial patterns by mass spectrometry-based proteomics strategies. Methods in Molecular Biology. 1528, 121-148 (2017).
  14. Maile, T. M., et al. Mass spectrometric quantification of histone post-translational modifications by a hybrid chemical labeling method. Molecular & Cellular Proteomics. 14 (4), 1148-1158 (2015).
  15. Dang, X., et al. The first pilot project of the consortium for top-down proteomics: a status report. Proteomics. 14 (10), 1130-1140 (2014).
  16. Schaffer, L. V., et al. Identification and quantification of proteoforms by mass spectrometry. Proteomics. 19 (10), 1800361 (2019).
  17. Cupp-Sutton, K. A., Wu, S. High-throughput quantitative top-down proteomics. Molecular Omics. , (2020).
  18. Varoquaux, N., et al. Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses. Proceedings of the National Academy of Sciences of the United States of America. 116 (52), 27124 (2019).
  19. Gordon, J. A. Use of vanadate as protein-phosphotyrosine phosphatase inhibitor. Methods in Enzymology. 201, 477-482 (1991).
  20. Zhou, M., et al. Profiling changes in histone post-translational modifications by top-down mass spectrometry. Methods in Molecular Biology. 1507, 153-168 (2017).
  21. Chambers, M. C., et al. A cross-platform toolkit for mass spectrometry and proteomics. Nature Biotechnology. 30 (10), 918-920 (2012).
  22. Kou, Q., Xun, L., Liu, X. TopPIC: a software tool for top-down mass spectrometry-based proteoform identification and characterization. Bioinformatics (Ocford, England). 32 (22), (2016).
  23. Park, J., et al. Informed-Proteomics: open-source software package for top-down proteomics. Nature Methods. 14 (9), 909-914 (2017).
  24. LeDuc, R. D., et al. The C-Score: a bayesian framework to sharply improve proteoform scoring in high-throughput top down proteomics. Journal of Proteome Research. 13 (7), 3231-3240 (2014).
  25. Fornelli, L., et al. Advancing top-down analysis of the human proteome using a benchtop quadrupole-orbitrap mass spectrometer. Journal of Proteome Research. 16 (2), 609-618 (2017).
  26. Sun, R. X., et al. pTop 1.0: A high-accuracy and high-efficiency search engine for intact protein identification. Analytical Chemistry. 88 (6), 3082-3090 (2016).
  27. Xiao, K., Yu, F., Tian, Z. Top-down protein identification using isotopic envelope fingerprinting. Journal of Proteomics. 152, 41-47 (2017).
  28. Cai, W., et al. MASH Suite Pro: A comprehensive software tool for top-down proteomics. Molecular & Cellular Proteomics: MCP. 15 (2), 703-714 (2016).
  29. Zhou, M., et al. Top-down mass spectrometry of histone modifications in sorghum reveals potential epigenetic markers for drought acclimation. Methods. , (2019).
  30. Garcia, B. A., Pesavento, J. J., Mizzen, C. A., Kelleher, N. L. Pervasive combinatorial modification of histone H3 in human cells. Nature Methods. 4 (6), 487-489 (2007).
  31. Zheng, Y., et al. Unabridged analysis of human histone H3 by differential top-down mass spectrometry reveals hypermethylated proteoforms from MMSET/NSD2 overexpression. Molecular & Cellular Proteomics: MCP. 15 (3), 776-790 (2016).
  32. Garcia, B. A., et al. Chemical derivatization of histones for facilitated analysis by mass spectrometry. Nature Protocols. 2 (4), 933-938 (2007).
  33. Holt, M. V., Wang, T., Young, N. L. One-pot quantitative top- and middle-down analysis of GluC-digested histone H4. Journal of the American Society for Mass Spectrometry. 30 (12), 2514-2525 (2019).
  34. Tian, Z., et al. Enhanced top-down characterization of histone post-translational modifications. Genome Biology. 13 (10), (2012).
  35. Wang, Z., Ma, H., Smith, K., Wu, S. Two-dimensional separation using high-pH and low-pH reversed phase liquid chromatography for top-down proteomics. International Journal of Mass Spectrometry. 427, 43-51 (2018).
  36. Gargano, A. F. G., et al. Increasing the separation capacity of intact histone proteoforms chromatography coupling online weak cation exchange-HILIC to reversed phase LC UVPD-HRMS. Journal of Proteome Research. 17 (11), 3791-3800 (2018).

Play Video

Cite This Article
Zhou, M., Abdali, S. H., Dilworth, D., Liu, L., Cole, B., Malhan, N., Ahkami, A. H., Winkler, T. E., Hollingsworth, J., Sievert, J., Dahlberg, J., Hutmacher, R., Madera, M., Owiti, J. A., Hixson, K. K., Lemaux, P. G., Jansson, C., Paša-Tolić, L. Isolation of Histone from Sorghum Leaf Tissue for Top Down Mass Spectrometry Profiling of Potential Epigenetic Markers. J. Vis. Exp. (169), e61707, doi:10.3791/61707 (2021).

View Video