This protocol describes in vivo intracellular recording of rat lumbar motoneurons with simultaneous trans-spinal direct current stimulation. The method enables us to measure membrane properties and to record rhythmic firing of motoneurons before, during and after anodal or cathodal polarization of the spinal cord.
Intracellular recording of spinal motoneurons in vivo provides a “gold standard” for determining the cells’ electrophysiological characteristics in the intact spinal network and holds significant advantages relative to classical in vitro or extracellular recording techniques. An advantage of in vivo intracellular recordings is that this method can be performed on adult animals with a fully mature nervous system, and therefore many observed physiological mechanisms can be translated to practical applications. In this methodological paper, we describe this procedure combined with externally applied constant current stimulation, which mimics polarization processes occurring within spinal neuronal networks. Trans-spinal direct current stimulation (tsDCS) is an innovative method increasingly used as a neuromodulatory intervention in rehabilitation after various neurological injuries as well as in sports. The influence of tsDCS on the nervous system remains poorly understood and the physiological mechanisms behind its actions are largely unknown. The application of the tsDCS simultaneously with intracellular recordings enables us to directly observe changes of motoneuron membrane properties and characteristics of rhythmic firing in response to the polarization of the spinal neuronal network, which is crucial for the understanding of tsDCS actions. Moreover, when the presented protocol includes the identification of the motoneuron with respect to an innervated muscle and its function (flexor versus extensor) as well as the physiological type (fast versus slow) it provides an opportunity to selectively investigate the influence of tsDCS on identified components of spinal circuitry, which seem to be differently affected by polarization. The presented procedure focuses on surgical preparation for intracellular recordings and stimulation with an emphasis on the steps which are necessary to achieve preparation stability and reproducibility of results. The details of the methodology of the anodal or cathodal tsDCS application are discussed while paying attention to practical and safety issues.
Trans-spinal direct current stimulation (tsDCS) is gaining recognition as a potent method to modify spinal circuit excitability in health and disease1,2,3. In this technique, a constant current is passed between an active electrode located above selected spinal segments, with a reference electrode located either ventrally or more rostrally4. Several studies have already confirmed that tsDCS can be used in managing certain pathological conditions, such as neuropathic pain5, spasticity6, spinal cord injury7 or to facilitate rehabilitation8. Researchers suggest that tsDCS evokes alterations in the ion distribution between the intracellular and the extracellular space across the cell membrane, and this can either facilitate or inhibit neuronal activity depending on the current orientation9,10,11. However, until recently, a direct confirmation of this influence on motoneurons was lacking.
Here, we describe a detailed protocol to conduct in vivo intracellular recording of electrical potentials from lumbar spinal motoneurons in the anesthetized rat with simultaneous application of tsDCS, in order to observe changes in motoneuron membrane and firing properties in response to anodal or cathodal polarization of the spinal neuronal network. Intracellular recordings open several areas of investigation of neuron properties, unavailable for previously used extracellular techniques9,12. For example, it is possible to precisely measure motoneuron membrane voltage response to direct current flow induced by tsDCS, to indicate voltage threshold for spike generation, or to analyze action potential parameters. Moreover, this technique allows us to determine motoneuron passive membrane properties, such as input resistance, and to observe the relationship between intracellular stimulation current and frequency of rhythmic firing of motoneurons. Antidromic identification of recorded motoneuron, based on the stimulation of functionally identified nerves (i.e., nerves providing efferents to flexors or extensors) allows us to additionally identify types of innervated motor units (fast versus slow), which gives an opportunity to test whether polarization differently influences individual elements of the mature spinal neuronal system. Due to extensive surgery preceding the recording and high requirements on stability and reliability of recordings, this technique is highly challenging but allows direct and long-term assessment of electrophysiological characteristics of one motoneuron: before, during and after application of tsDCS, which is crucial to determine both its acute actions and persistent effects13. As a motoneuron directly activates extrafusal muscle fibers14 and takes part in feedback control of a muscle contraction and developed force15,16 any observed influence of tsDCS on the motor unit or muscle contractile properties may be linked to modulations of motoneuron excitability or firing characteristics.
All procedures connected to this protocol have been accepted by the appropriate authorities (e.g., Local Ethics Committee) and follow the national and international rules on animal welfare and management.
NOTE: Each participant involved in the procedure has to be properly trained in basic surgical procedures and has to have a valid license for performing animal experiments.
1. Anesthesia and premedication
2. Surgery
3. Preparation for the recording and stimulation
4. Motoneuron tracking and penetration
5. Recording motoneuron membrane and firing properties
6. Trans-spinal direct current stimulation (tsDCS)
Parameters of action potentials and several membrane properties can be calculated on the basis of intracellular recordings when stable conditions of cell penetration are ensured. Figure 1A presents a typical orthodromic action potential evoked by intracellular stimulation, which meets all criteria for data inclusion (the resting membrane potential of at least -50 mV, and spike amplitude higher than 50 mV, with a positive overshoot). Action potential parameters, such as the spike amplitude, the afterhyperpolarization amplitude or the afterhyperpolarization half-decay time (AHP-HDT) can be measured. A value of the latter parameter in rat motoneurons serves as a reliable criterion for distinguishing between fast and slow motoneurons (AHP-HDT > 20 ms for slow, while AHP-HDT <20 ms for fast motoneurons)17. Figure 1B shows a cell response to a 100 ms hyperpolarizing current pulse of 1nA, from which both peak and plateau input resistance (IR) of a motoneuron can be determined from the voltage deflection. Figure 1C shows an expanded voltage trace of a rheobasic spike with a clearly marked voltage threshold of the spike, indicating the level of membrane depolarization at which voltage-gated sodium channels are activated to initiate the action potential. All these recordings can be repeated several times during and after tsDCS application, which allows us compare respective parameters as long as the resting membrane potential is stable and other criteria of stimulation and recording protocol are fulfilled.
Several studies have indirectly shown that tsDCS alters motoneuron excitability and firing pattern9,18. Figure 2 shows examples of intracellular voltage traces from two motoneurons stimulated intracellularly with 500 ms square pulses of depolarizing current before, during and after tsDCS application. Under stable conditions, recordings repeated several minutes one after another can be performed, and motoneuron firing patterns can be reliably compared. Anodal (+) tsDCS was found to act towards increased motoneuron excitability and higher frequencies of rhythmic firing (Figure 2A), while cathodal (-) tsDCS acted towards firing inhibition (Figure 2B). Moreover, the effects of both types of tsDCS outlasted the period of polarization. It is also worth noting that the observed changes in excitability and firing pattern are not merely a result of cell membrane depolarization or hyperpolarization by anodal or cathodal tsDCS, respectively, but display profound alterations not related to the change of a membrane potential, as they persisted despite the fact that this parameter returned to a baseline after the end of polarization.
Finally, it has to be stressed that any deviations from the presented protocol will likely result in a failed experiment, due to deterioration of preparation and/or a profound decline of data reliability. Figure 3 shows examples of recordings when data inclusion criteria were compromised either due to imperfect cell penetration (Figure 3A), neglection to compensate microelectrode resistance and capacitance (Figure 3B) or a spinal cord instability (Figure 3C). It is important that researchers identify such non-optimal recordings, and implement proper corrective actions or disregard such results from the data set.
Figure 1: Parameters of action potentials and membrane properties.
(A) An orthodromic action potential elicited by intracellular stimulation, with indicated basic parameters which can be calculated from this record. AP ampl = action potential amplitude; AHP ampl = afterhyperpolarization amplitude; AHP-HDT = afterhyperpolarization half-decay time. (B) The voltage trace of a membrane response to a short (100 ms) depolarizing current pulse of 1nA intensity, which enables us to calculate input resistance (IR). Notice the peak of a potential deflection (IR Peak) followed by a small decrease and the following plateau phase of the membrane potential (IR plateau). (C) The expanded voltage trace of a rheobasic spike with a dotted horizontal line indicating the spike voltage threshold. Please click here to view a larger version of this figure.
Figure 2: Effects of polarization on motoneuron firing.
(A) Intracellular records from one motoneuron stimulated intracellularly with 7.5 nA for 500 ms, made before (left), during anodal tsDCS (0.1 mA, middle), and 10 min after the end of polarization (right). Note the gradual increase in the motoneuron excitability at the same stimulus intensity. (B) Intracellular records from another motoneuron stimulated intracellularly with 6 nA for 500 ms, made before (left), during cathodal tsDCS (0.1 mA, middle), and 10 min after the end of polarization (right). Note a gradual inhibition of motoneuron firing frequency at the same stimulus intensity. Below recordings, traces of intracellular stimulation current are provided. The calibration bars in the bottom right apply to all presented intracellular recordings. The values of the resting membrane potential are provided to the left of each recording. Frequencies of steady-state firing, calculated from the means of the final three interspike intervals, are given above records. Please click here to view a larger version of this figure.
Figure 3: Examples of suboptimal records as a result of deviations from the experimental protocol.
(A) The antidromic spike recorded from a motoneuron inadequately penetrated. The resting membrane potential is insufficient (-45 mV), and despite an appropriate shape of the spike with all consecutive phases of depolarization, repolarization, and hyperpolarization, its amplitude is too low (41 mV) and without an overshoot. (B) A rheobasic spike generated at an unrealistic voltage threshold (membrane depolarized to +68 mV). This kind of error is usually due to a blocked microelectrode, with uncompensated resistance and capacitance. One can also see that this record is strongly contaminated by 50 Hz electrical noise. (C) A motoneuron rhythmic firing in response to 500 ms depolarizing current, with large fluctuations of a membrane potential, predominantly caused by unstable microelectrode penetration, possibly due to excessive respiratory movements. For all the presented cases the calculated membrane or firing properties would be unreliable. Please click here to view a larger version of this figure.
If performed correctly, the surgical part of the described protocol should be completed within approximately three hours. One should take particular care in maintaining stable physiological conditions of an animal during the surgery, in particular body temperature and depth of anesthesia. Apart from obvious ethical considerations, a lack of proper anesthesia can result in excessive limb movements during nerve dissection or laminectomy and lead to damage to the preparation or a premature experiment termination. Upon paralyzing an animal prior to penetrating the spinal cord with a microelectrode, it is crucial to monitor the depth of anesthesia and heart rate and to apply proper ventilation parameters based on animal weight and lung capacity. Any deviations from the desired physiological parameters have to be amended immediately to ensure procedure success. Following the surgery, stable recording conditions should be possible to maintain for at least four hours.
After penetration of a motoneuron, the recording stability is of high importance. It is imperative that a membrane potential remains constant during control recordings, as any fluctuations will significantly influence the rheobase current and a threshold of rhythmic firing. Proper fixation of the vertebral column should provide basic stability, while the goal of a pneumothorax is to decrease the spinal cord movements evoked by respiration. Moreover, one has to be sure that muscle contractions are fully abolished before attempting the penetration and the neuromuscular blocker is administered at regular intervals.
Following a successful penetration antidromic identification of the recorded motoneuron can be performed by stimulation of a respective nerve branch. This is a real advantage of an in vivo preparation, in which motoneuron axons are kept in continuity with the innervated muscles in reference to in vitro intracellular recordings performed on spinal slices, which only recently were possible in adult animals16, but do not allow identification of recorded motoneuron. However, it is important that the researchers have a clear understanding of the difference between antidromic and orthodromic activation of motoneuron19 to avoid misinterpretation of the data. It is important to keep the peripheral nerve stimulation as low as possible (less than 0.5 V) to prevent the activation of additional nerves due to the current spread and to pay attention to a constant and short latency of the antidromic spike19.
Another advantage of the presented technique is that motoneurons can be additionally classified as fast or slow types on the basis of their action potential parameters, namely the AHP-HDT duration17. Differentiation between motoneurons innervating fast-type and slow-type muscle fibers is crucial in regard to their different contribution to muscle performance during movements. Moreover, fast and slow motoneurons can react differently to the polarization9.
To ensure reliable results of polarization one should pay attention to setting proper parameters of tsDCS. Current intensity should, on one hand, provide a desired field density at the selected area to evoke effects on neuronal networks, while on the other hand should be within safety limits for tissue damage20. Size of active and reference electrodes and their placement with regard to a site of recording are also important elements to consider4, and the tsDCS duration application time should be sufficient to evoke the desired effects16,17,22. In this methods paper, the representative results were obtained by application of 100 µA cathodal or anodal polarization for 15 min. Taking into account the electrode shape and diameter, the respective electrical field intensity directly under the electrode was 39.25 µA·mm2. However, one should understand that the precise value of the electrical field at the recorded motoneuron site is impossible to pre-determine as motoneuron location with respect to polarization electrode varies, and the e-field density drops significantly with increased depth and decreased electrode size4,24. Moreover, the orientation of the motoneuron compartments relative to the applied electric field is important for generation of action potentials22,25,26, and this cannot be predicted for individual cells. In addition, it is highly important to understand that tsDCS effects are not limited to a period of polarization, and that persistent, long-lasting effects are well documented22,27. Therefore, following even a single, brief polarization session all successive recordings in the same preparation would be performed in post-polarization conditions, which limits the number of possible acute polarization recordings to one per animal.
Additional modifications of the presented procedure can be made to answer specific research questions. This protocol with minimal modifications can be used as a standard for several experimental designs, e.g., when testing various duration and/or amplitudes of applied tsDCS or when comparing short or long-term effects of tsDCS in various pools motoneurons. Use of several genetic disease models (for example SOD1 G93A rat model of amyotrophic lateral sclerosis) or different nerves for antidromic nerve activation (peroneal, tibial, saphenous, etc.) is acceptable. However, one should also be aware of procedure limitations. For example, the use of barbiturates for anesthesia inhibits the activity of persistent inward currents28, while the systemic introduction of specific blockers commonly used in in vitro preparations (e.g., strychnine to block nicotinic receptors) can prove fatal to the animal. It is advisable for researchers to consider these limitations before selecting the proper experimental protocol.
The authors have nothing to disclose.
This work was supported by the National Science Center grant No. 2017/25/B/NZ7/00373. Authors would like to recognize the work of Hanna Drzymała-Celichowska and Włodzimierz Mrówczyński, who both contributed to the data gathering and analysis of the results presented in this paper.
Durgs and solutions | – | – | – |
Atropinum sulfuricum | Polfa Warszawa | – | – |
Glucose | Merck | 346351 | – |
NaHCO3 | Merck | 106329 | – |
Pancuronium Jelfa | PharmaSwiss/Valeant | – | Neuromuscular blocker |
Pentobarbital sodium | Biowet Puławy Sp. z o.o | – | Main anesthetic agent |
Pottasium citrate | Chempur | 6100-05-06 | – |
Tetraspan | Braun | – | HES solution |
Surgical equipment | – | – | – |
21 Blade | FST | 10021-00 | Scalpel blade |
Cauterizer | FST | 18010-00 | – |
Chest Tubes | Mila | CT1215 | – |
Dumont #4 Forceps | FST | 11241-30 | Muscle forceps |
Dumont #5 Forceps | FST | 11254-20 | Dura forceps |
Dumont #5F Forceps | FST | 11255-20 | Nerve forceps |
Dumont #5SF Forceps | FST | 11252-00 | Pia forceps |
Forceps | FST | 11008-13 | Blunt forceps |
Forceps | FST | 11053-10 | Skin forceps |
Hemostat | FST | 13013-14 | – |
Rongeur | FST | 16021-14 | For laminectomy |
Scissors | FST | 15000-08 | Vein scissors |
Scissors | FST | 15002-08 | Dura scissors |
Scissors | FST | 14184-09 | For trachea cut |
Scissors | FST | 104075-11 | Muscle scissors |
Scissors | FST | 14002-13 | Skin scissors |
Tracheal tube | – | – | Custom made |
Vein catheter | Vygon | 1261.201 | – |
Vessel cannulation forceps | FST | 18403-11 | – |
Vessel clamp | FST | 18320-11 | For vein clamping |
Vessel Dilating Probe | FST | 10160-13 | For vein dissection |
Sugrgical materials | – | – | – |
Gel foam | Pfizer | GTIN 00300090315085 | Hemostatic agent |
Silk suture 4.0 | FST | 18020-40 | – |
Silk suture 6.0 | FST | 18020-60 | – |
Equipment | – | – | – |
Axoclamp 2B | Molecular devices | discontinued | Intracellular amplifier/ new model Axoclamp 900A |
CapStar-100 End-tidal CO2 Monitor | CWE | 11-10000 | Gas analyzer |
Grass S-88 | A-M Systems | discontinued | Constant current stimulator |
Homeothermic Blanket Systems with Flexible Probe | Harvard Apparatus | 507222F | Heating system |
ISO-DAM8A | WPI | 74020 | Extracellular amplifier |
Microdrive | – | – | Custom made/replacement IVM/Scientifica |
P-1000 Microelectrode puller | Sutter Instruments | P-1000 | Microelectrode puller |
SAR-830/AP Small Animal Ventilator | CWE | 12-02100 | Respirator |
Support frame | – | – | Custom made/replacement lab standard base 51601/Stoelting |
Spinal clamps | – | – | Custom made/replacement Rat spinal adaptor 51695/Stoelting |
TP-1 DC stimulator | WiNUE | – | tsDCS stimulator |
Miscellaneous | – | – | – |
1B150-4 glass capillaries | WPI | 1B150-4 | For microelectrodes production |
Cotton wool | – | – | – |
flexible tubing | – | – | For respirator and CO2 analyzer connection |
MicroFil | WPI | MF28G67-5 | For filling micropipettes |
Silver wire | – | – | For nerve electrodes |