The goal of this protocol is to inject Rhodamine-conjugated globular actin into Drosophila embryos and image intranuclear actin rod assembly following heat stress.
The purpose of this protocol is to visualize intranuclear actin rods that assemble in live Drosophila melanogaster embryos following heat stress. Actin rods are a hallmark of a conserved, inducible Actin Stress Response (ASR) that accompanies human pathologies, including neurodegenerative disease. Previously, we showed that the ASR contributes to morphogenesis failures and reduced viability of developing embryos. This protocol allows the continued study of mechanisms underlying actin rod assembly and the ASR in a model system that is highly amenable to imaging, genetics and biochemistry. Embryos are collected and mounted on a coverslip to prepare them for injection. Rhodamine-conjugated globular actin (G-actinRed) is diluted and loaded into a microneedle. A single injection is made into the center of each embryo. After injection, embryos are incubated at elevated temperature and intranuclear actin rods are then visualized by confocal microscopy. Fluorescence recovery after photobleaching (FRAP) experiments may be performed on the actin rods; and other actin-rich structures in the cytoplasm can also be imaged. We find that G-actinRed polymerizes like endogenous G-actin and does not, on its own, interfere with normal embryo development. One limitation of this protocol is that care must be taken during injection to avoid serious injury to the embryo. However, with practice, injecting G-actinRed into Drosophila embryos is a fast and reliable way to visualize actin rods and can easily be used with flies of any genotype or with the introduction of other cellular stresses, including hypoxia and oxidative stress.
This protocol describes how to inject G-actinRed to visualize the assembly of intranuclear actin rods in heat-stressed embryos that are undergoing an inducible Actin Stress Response (ASR)1. We developed this protocol to aid studies of the ASR, which in embryos leads to disrupted morphogenesis and reduced viability, and in adult human cell types is associated with pathologies including renal failure2, muscle myopathies3, and Alzheimer’s and Huntington’s Disease4,5,6,7,8. This ASR is induced by numerous cellular stresses, including heat shock9,10,11, oxidative stress4,6, reduced ATP synthesis12, and abnormal Huntingtin or β-amyloid oligomerization4,5,6,7,9,13,14,15,16. A hallmark of the ASR is the assembly of aberrant actin rods in either the cytoplasm or nucleus of affected cells, which is driven by stress-induced hyperactivation of an actin interacting protein, Cofilin1,5,6,10. Unfortunately, key knowledge gaps remain regarding the ASR. For example, the function of the actin rods is not known. We do not understand why rods form in the cytoplasm of some cell types, but the nucleus of others. Nor is it clear whether the ASR is protective or maladaptive for cells or embryos undergoing stress. Finally, we still do not know the detailed mechanisms underlying Cofilin hyperactivation or actin rod assembly. Thus, this protocol provides a rapid and versatile assay to probe the ASR by visualizing actin rod formation and dynamics in the highly tractable experimental system of the living fruit fly embryo.
The protocol to microinject G-actinRed into living Drosophila embryos was initially developed to study the dynamics of normal cytoplasmic actin structures17 during tissue building events. In those studies, we found that G-actinRed injection did not adversely affect early developmental processes in the embryo, including cytokinesis or gastrulation17,18. We then modified the protocol, adapting the embryo handling and G-actinRed injection to allow imaging of actin rods in heat stressed embryos undergoing the ASR1. Other methods besides G-actinRed injection can be used to visualize actin in embryos. These methods rely on expressing fluorescent proteins (FPs) tagged to actin or to domains of actin binding proteins, such as Utrophin-mCherry, Lifeact, F-tractin-GFP, and Moesin-GFP (reviewed in19). However, using these FP probes requires caution because they can stabilize or disrupt some actin structures, do not equally label all actin structures20, and in the case of actin-GFP, are highly overexpressed – problematic for the analysis of rod assembly which is not only stress dependent but also actin concentration dependent1. Thus, G-actinRed is the preferred probe for rod studies in fly embryos, and the large size of the embryo allows its easy injection.
The workflow of this protocol is similar to other well-established microinjection techniques that have been used for injecting proteins, nucleic acids, drugs, and fluorescent indicators into Drosophila embryos21,22,23,24,25,26,27. However, following the microinjection of G-actinRed here, embryos are exposed to mild heat stress to induce the ASR and intranuclear actin rod assembly. For labs with access to flies and an injection rig, this method should be readily implementable and adaptable for specific lines of study in regard to the ASR, including its induction by different stresses or modulation in distinct genetic backgrounds.
1. Prepare embryo collection cups and apple juice agar plates
2. Prepare a working stock solution of G-actinRed for microinjection
NOTE: This preparation only makes 2 μL of a 5 mg/mL working stock of G-actinRed, so if users are unaccustomed to the microinjection technique, it is advantageous to skip to step 3 and practice the microinjections with a neutral pH buffer to conserve precious working stock. The 10 μg stock of G-actinRed from the vendor can be stored in its original packaging in a 16 oz screw top jar with ~500 g of desiccant at 4 °C for up to 6 months.
3. Collect embryos and mount for injection
4. Inject and heat stress embryos to promote actin rod formation
NOTE: All injections are done in a temperature-controlled room at 18 °C.
5. Image actin rods in heat stressed embryos by confocal microscopy
6. Alternative imaging experiments
A schematic workflow of embryo handling is depicted in Figure 1, and a timetable for a typical experiment is presented in Table 1. An estimate for a good experimental outcome is that for every 10 embryos injected, at least half of the embryos viewed will be at the correct developmental stage, undamaged, and exhibit a robust ASR with heat stress at 32 °C. This ASR will be evidenced by the assembly of intranuclear actin rods as shown in the representative surface view image of an embryo in Figure 2A (right panel). Actin rods will appear in several orientations (parallel or perpendicular to the imaging plane) inside the nuclei and can be imaged through several focal planes. In comparison, control embryos incubated at 18 °C will not display actin rods (Figure 2A, left panel). The percent nuclei containing rods can be quantified, as demonstrated in Figure 2B. In addition, FRAP experiments may be performed on rods (Figure 2C). A suggested quantification method for FRAP data is referenced in1 and an example of a fluorescence recovery plot for a bleached versus unbleached region of an actin rod is shown in Figure 2D.
If an embryo is severely damaged by injection or becomes too dry during the experiment, mitotic asynchrony might be observed and cellularization will be disrupted. Sometimes, rods may not be visible because of a failure to get enough actin injected into the embryo. If this happens, ensure that the amount of G-actinRed injected is 500 pL (measured with a micrometer in step 4.5) and confirm that this amount remains consistent between embryos by doing a test injection into the surrounding oil to check the size of the G-actinRed bubble in between each embryo microinjection. Additionally, to ensure rod visualization, work quickly to add the coverslip and move the embryos to the heated microscope stage once they are taken from the humid chamber in step 5.4, as rod assembly is reversible1 and rods can disassemble if the embryos are kept at a temperature less than 32°C for more than 30 min.
Figure 1: Schematic overview of embryo handling during the experiment. (1) Adult flies in embryo collection cups lay embryos on apple juice agar plates. (2) Embryos are dechorionated with 1:1 bleach:distilled water, poured into a collection basket, and thoroughly washed with distilled water to remove bleach and debris. (3) Embryos are transferred with a paintbrush to a rectangular apple juice agar wedge on a slide and arranged on their sides, head-to-tail, with dorsal region facing the edge of the agar. (4) A 5 x 50 mm region of a glass coverslip (orange) is coated with “embryo glue” and pressed down gently onto the row of embryos arranged on the agar to adhere them to the coverslip. (5) The coverslip with embryos is inverted so that embryos face up. The embryos are desiccated in a screw top jar. (6) Immediately after desiccation, the coverslip is taped to a slide, embryos facing up, and embryos are covered with Halocarbon 27 oil. (7) A microneedle previously loaded with prepared G-actinRed is used to make a single injection into the center of the ventral region of each embryo, with needle positioned parallel to the coverslip. (8) After injection, embryos are incubated inside a Petri dish humidified with damp lab tissue wipers at the control temperature (18 °C) or with heat stress (32 °C). (9) After incubation, the coverslip with the embryos on it is removed from the slide. (10) Two pieces of double-sided tape are layered on top of each other, sliced in half lengthwise, and placed on either side of the oil surrounding the embryos on the first coverslip. A second coverslip (blue) is placed on top of the first to create a new imaging surface, offset so that it leaves a gap for more oil to be added to cover the embryos as necessary. (11) If imaging on an inverted confocal microscope, the coverslip sandwich is inverted so that the second coverslip faces the objective. Imaging is done in an incubated chamber, and actin rods are visualized over several focal planes of each embryos’ nuclei. Please click here to view a larger version of this figure.
Figure 2: Representative results of actin rods in heat-stressed embryos. (A) Actin rods are not seen in an embryo that was incubated at the control temperature of 18 °C (left panel), but are seen in the nuclei of an embryo that was heat-stressed at 32 °C (right panel). (B) Quantification of the percentage of nuclei with actin rods from a representative experiment. Each dot represents one embryo where rods and nuclei were counted in the entire imaged region (n = 22 embryos at 18 °C; n = 23 embryos at 32 °C; error bars show standard deviation). A Student’s t-test, with unequal variance assumed, was used to calculate the p-value. (C) A representative time series shows FRAP on an actin rod. The portion of the rod that was bleached is indicated by a white arrowhead. Pre-bleach is 2 s prior to the bleach step. Time = 0 s is the bleach step, and fluorescence recovery was tracked until 60 s post bleach. (D) A plot shows recovery dynamics for actin fluorescence in a bleached region of a rod, compared to an unbleached region in the same rod. Rods are remarkably stable and actin within them does not turnover. Thus, no recovery is seen. Please click here to view a larger version of this figure.
Table 1: Experimental workflow with suggested timetable. This timetable summarizes the expected time it will take to complete each step of the protocol.
Order | Step | Required time for each step | Description |
1 | 1.1 | 5 days in advance | Make embryo collection cages. Pour apple juice agar plates. |
2 | 1.2-1.3 | 2 days in advance | Set up collection cages with adult male and female flies. |
3 | 2.6 Note | 1 day in advance | Pull capillary tubes to make microneedles. |
4 | 2.1-2.6 | 1 h | Prepare G-actin. |
5 | 3.1 | 30 min | Allow flies to lay eggs. |
6 | 3.2-3.10 | 15-30 min | Collect, mount, desiccate embryos. Cover embryos with oil. |
7 | 4.1 | 30 min in advance | Prepare humid incubation chambers. |
8 | 4.2-4.4 | 1 min | Load microneedle. |
9 | 4.5-4.10 | 10-20 min | Calibrate G-actin bubble size and inject embryos. |
10 | 4.11 | 30 min-1+ h | Incubate/heat stress embryos. |
11 | 5.1-5.3 | 1 h in advance | Turn on microscope and incubation stage. |
12 | 5.4-5.10 | 5 min | Sandwich embryos between coverslips for imaging. |
13 | 5.11-6.6 | 15 min-1+ h | Image intranuclear actin rods in embryos. |
Table 2: Troubleshooting suggestions. This table provides suggestions for troubleshooting to aid the successful completion of the protocol.
Potential problem | Suggestions |
Flies do not lay enough embryos. | Set up the cup at least 5 days in advance (refer to steps 1.1-1.3). Change plates 3x per day leading up to the experiment to encourage egg laying. Let flies lay embryos for 1 h instead of 30 min. Set up cups with young adult flies. |
No G-actin is expelled from the microneedle. | Increase pressure and time settings on microinjector. Break the microneedle tip further (refer to step 4.5 Note). Since major clogs may not clear, load a new needle. |
Difficult to calibrate a small enough bubble size. | Adjust the pressure and time settings (refer to step 4.5). Since the microneedle tip opening might be too large, load a new needle. |
Embryos release from the glue on the coverslip during injecting. | Adjust “embryo glue” consistency for future coverslips by adding more double-sided tape to the heptane solution (refer to step 3.5 Note). |
Embryos dry out during temperature incubation. | Make sure that the slide is level in the incubation chamber (refer to step 4.11) and that the oil is not touching anything that might wick it away. Add extra drops of oil to the embryos. Decrease the pre-injection desiccation time (refer to step 3.8). |
Oil does not completely cover the embryos in between the first and second coverslips. | Add extra oil via capillary action to the small gap between the coverslips (refer to step 5.8 Note). |
Intranuclear actin rods are not visible in heat-stressed embryos. | Inject a larger volume of G-actin (refer to step 4.5). Confirm that the temperature of both the post-injection incubation (refer to step 4.11) and imaging chamber are 32 °C (refer to step 5.3). |
Large bubbles of G-actin are visible around the injection site of embryos. | Inject a smaller volume of G-actin (refer to step 4.5). Increase the embryo desiccation time to promote better retention of the injected actin inside the embryo (refer to step 3.8). |
The significance of this method is that it utilizes the well-established protocol of microinjection in Drosophila embryos21,22,23,24,25,26,27 to enable new research regarding the ASR and accompanying actin rod assembly. A major advantage of injecting G-actinRed into live embryos is that the ASR can be studied under a variety of contexts. For future studies, these contexts may include injecting embryos of other genotypes as part of a mutant screen or exposing injected embryos to different stress conditions, such as oxidative stress4,32. Although not described in detail here, this injection technique can also be modified to inject nucleic acids, other proteins, drugs and indicator dyes (for examples, see21,22,23,24,32) to study the ASR. Thus, this method presents a number of approaches for identifying the range of stresses that induce ASR, further characterizing cellular responses during ASR (e.g. changes in mitochondrial activity), and uncovering new molecules and mechanisms underlying intranuclear actin rod assembly.
Some critical steps of the protocol include the following: In step 3.8, embryos must be properly desiccated to ensure successful injection and best embryo health. Desiccation time will depend on the ambient temperature and humidity of the laboratory, so it is recommended to practice the mounting, desiccation, and injections with a neutral pH buffer first to establish this parameter for handling the embryos. In step 4.5, the microneedle and injection settings must be fine-tuned to allow injection of enough G-actinRed into embryos. If too little G-actinRed is injected into the embryo, actin rods may not be easily visualized, since the formation of actin rods is dependent on the concentration of free actin1. Additionally, it will be difficult to get consistent results from FRAP experiments if there is not enough G-actinRed injected, since the fluorescence intensity will not be high enough to overcome background fluorescence. Therefore, it is important to calibrate the bubble size each time a new needle is loaded and used. G-actinRed is viscous and tends to clog inside the microneedle. Sometimes, this can lead to injecting variable amounts of G-actin into the embryos. If the microneedle is clogged and clearing the microneedle with high pressure fails, it may be necessary to attempt breaking the tip of the microneedle further or even loading a new microneedle and injecting a fresh set of embryos. Finally, in step 4.11, embryos must be incubated at elevated temperature and for sufficient time for the ASR to be induced and rods to form1. The temperatures of all incubators should be constantly monitored, time to transfer embryos from incubator to incubator must be limited, and a timer should be used for all incubations. Other possible problems are listed in Table 2 with accompanying troubleshooting tips.
One major limitation of this protocol is that exceptional care must be taken to preserve the health of the embryos during injections, incubations and imaging. The protocol has been designed to maximize embryo health, and with significant practice, a researcher can complete all steps of the protocol with embryo development progressing at the rates expected per temperature31. A second limitation of the protocol is the necessity for a microinjection rig, which can be fairly expensive and is not common equipment for every fly lab. However, if an adjacent lab is equipped to inject other embryos (e.g., Xenopus, Zebrafish, and Caenorhabditis elegans) or adherent cells, the injection rig used is likely suitable for Drosophila injections. In that case, only the shape of the needle need be adapted for Drosophila embryos according to the guidelines of the Pipette Cookbook29. Alternatively, there are some less expensive micoinjector options on the market (e.g., analog microinjectors), which can significantly reduce the cost of assembling an injection rig.
The authors have nothing to disclose.
The authors gratefully acknowledge the work of Liuliu Zheng and Zenghui Xue, who helped pioneer this technique in the Sokac lab, as well as Hasan Seede who helped with the analysis. The work for this study is funded by a grant from NIH (R01 GM115111).
Adenosine triphosphate (ATP) | Millipore-Sigma | A23835G | Component of G buffer |
Apple juice, Mott's, 64 fl oz | Mott's | 014800000344 | Component of apple juice plates |
Bacto Agar | BD | 214010 | Component of apple juice plates |
Bleach, PureBright Germicidal, 6.0% sodium hypochlorite | KIK International | 059647210020 | For dechorionating embryos |
Calcium chloride | Millipore-Sigma | C1016500G | Component of G buffer |
Cell strainer, 70 μm | Falcon | 352350 | For collecting dechorionated embryos |
Confocal microscope, LSM 880 34-channel with Airyscan | Zeiss | 0000001994956 | For imaging intranuclear actin rods |
Desiccant | Drierite | 24001 | For desiccating embryos |
Dissecting microscope, Stemi 508 Stereoscope with 8:1 zoom | Zeiss | 4350649000000 | For arranging embryos on agar wedge |
Dissecting needle, 5 in | Fisher Scientific | 08965A | For arranging embryos on agar wedge |
Dithiothreitol (DTT) | Fisher Scientific | BP1725 | Component of G buffer |
Double-sided Tape, Scotch Permanent, 0.5 in x 250 in | 3M | 021200010323 | For making embryo glue |
Embryo collection cage | Genessee Scientific | 59100 | For housing adult flies and collecting embryos |
Fine tip tweezers, Dumont Tweezer, Style 5 | Electron Microscopy Sciences | 72701D | For arranging embryos on agar wedge |
Glass capillaries, Borosillicate glass, thin 1 mm x 0.75 mm | World Precision Instruments, Inc. | TW1004 | For microneedles |
Halocarbon oil 27 | Millipore-Sigma | H8773100ML | For hydration of embryos |
Heated stage incubator | Zeiss | 4118579020000, 4118609020000, 4118609010000 | For confocal imaging |
Lab Tissue Wipers, KimWipes | Kimberly-Clark | 34155 | Lab tissue wipers |
Light microscope, Invertoskop 40C Inverted Phase contrast microscope, refurbished | Zeiss | Discontinued | Injection microscope |
Methyl-4-hydroxybenzoate | Millipore-Sigma | H36471KG | Component of apple juice plates |
Microinjector, FemtoJet4x | Eppendorf | 5253000025 | Microinjector |
Micro loader tips, epT.I.P.S. 20 μL | Eppendorf | 5242956003 | For loading microneedles |
Micromanipulator and injection stage with x,y,z dials for needle adjustment | Bernard Instruments, Inc (Houston, TX) | Custom | For performing microinjections |
Micropipette puller, Model P-97, Flaming/Brown | Sutter Instruments | P97 | For pulling capillary tubes to make microneedles |
Microscope cover glass 24×50-1.5 | Fisher Scientific | 12544E | For mounting embryos |
Microscope slides, Lilac Colorfrost, Precleaned, 25 x 75 x 1mm | Fisher Scientific | 22037081 | For mounting embryos for injection |
n-Heptane | Fisher Scientific | H3601 | Component of embryo glue |
Objective, 10x | Zeiss | Discontinued | 10x objective for injection microscope |
Objective, C-Apochromat 40x/1,2 W Korr. FCS | Zeiss | 4217679971711 | 40x water objective for confocal |
Objective, LD LCI Plan-Apochromat 25x/0.8 Imm Cor DIC M27 for oil, water, silicone oil or glycerine immersion (D=0-0.17mm) (WD=0.57mm at D=0.17mm) | Zeiss | 4208529871000 | 25x mixed immersion objective for confocal |
Objective, Plan-Apocrhomat 63x/1.40 Oil DIC f/ELYRA | Zeiss | 4207829900799 | 63x oil objective for confocal |
Paintbrush, Robert Simmons Expression E85 Pointed Round size 2 | Daler-Rowney | 038372016954 | For transferring embryos |
Paper towels, Kleenex C-fold paper towels, white | Kimberly-Clark | 884266344845 | For blotting cell strainer |
Pasteur pipette, 5 3/4 in | Fisher Scientific | 1367820A | For covering embryos with oil |
Petri dish, glass, 100 x 20 mm | Corning | 3160102 | For humid incubation chamber |
Petri dish, plastic, 60 x 15 mm | VWR | 25384092 | For apple juice plates |
Pipette, Eppendorf Reference 0.5-10 μL | Eppendorf | 2231000604 | For loading the microneedle |
Pipette tip, xTIP4 250 μL | Biotix | 63300006 | For adding embryo glue to coverslip |
Razor blade | VWR | 55411050 | For cutting agar wedge, tape, pipette tips |
Rhodamine-conjugated globular actin, human platelet (non-muscle; 4×10 μg) | Cytoskeleton, Inc. | APHR-A | G-actin^Red |
Scintillation vial, 20 mL Glass borosillicate with polyethylene liner and urea caps | Fisher Scientific | 033377 | For making embryo glue |
Screw top jar, 16 oz | Nalgene | 000194414195 | For desiccating embryos |
Stage micrometer | Electron Microscopy Sciences | 602104PG | For calibrating volume of G-actin injection |
Sucrose | Millipore-Sigma | 840971KG | Component of apple juice plates |
Trizma base | Millipore-Sigma | T15031KG | Component of G buffer |
Yeast, Lesaffre Yeast Corporation Yeast, Red Star Active Dry, 32 oz | Lesaffre Yeast Corporation | 117929157002 | Component of yeast paste |